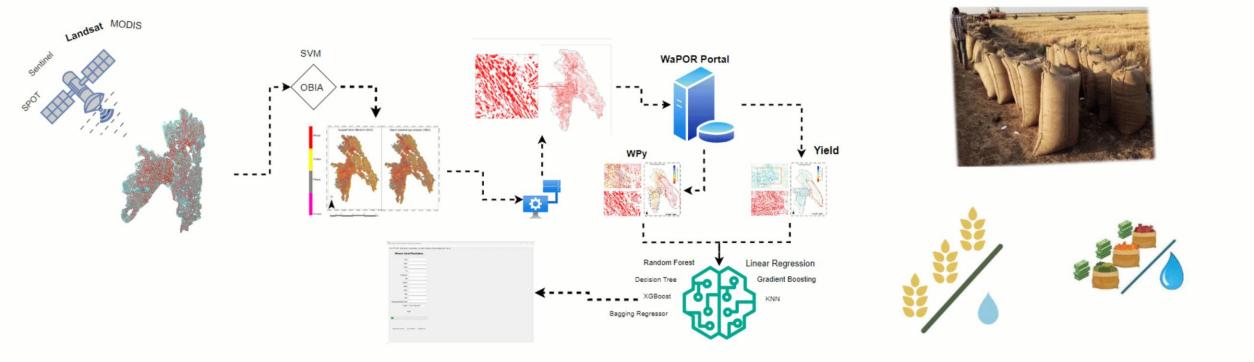




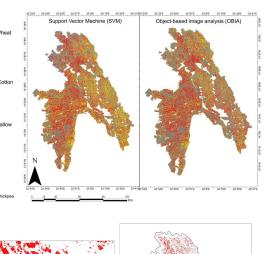

Presented by: Osman O. Ahmed Ibrahim



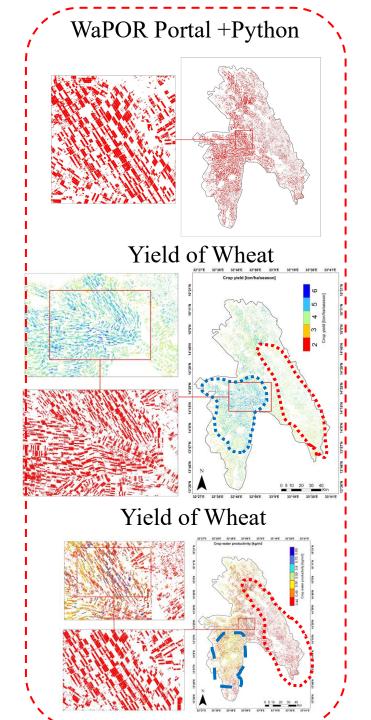

Sep. 20, 2024 @ 03:00 P.M.

supervisor:

(Assoc. Prof. VOLKAN YILMAZ)


Application of Remote Sensing and Machine Learning for Estimating Crops Areas, Yield, and Water Productivity of Wheat in the Gezira Irrigation Scheme




# Sentinel-2A (02/02/2020)



# SVM and OBIA







#### Result from WaPOR Portal +Python+field Data+Data from Google Eearth Engine

The Wheat Yield and Water Productivity Prediction

#### Input & Predict Performance Visualization Correlation Heatmap Feature Importance About

#### Wheat Yield Prediction

| RET:                                                                       | 1855.6 |  |  |  |  |  |
|----------------------------------------------------------------------------|--------|--|--|--|--|--|
| AETI:                                                                      | 837.3  |  |  |  |  |  |
| NPP:                                                                       | 321.23 |  |  |  |  |  |
| T:                                                                         | 651.5  |  |  |  |  |  |
| Adequacy:                                                                  | 0.53   |  |  |  |  |  |
| BF:                                                                        | 0.78   |  |  |  |  |  |
| AGBM:                                                                      | 7.14   |  |  |  |  |  |
| WPb:                                                                       | 0.85   |  |  |  |  |  |
| NDVI:                                                                      | 0.49   |  |  |  |  |  |
| EVI:                                                                       | 3.66   |  |  |  |  |  |
| SIPI:                                                                      | 1.49   |  |  |  |  |  |
| Calculated Yield ton/ha: 3                                                 |        |  |  |  |  |  |
| Model: KNN ~                                                               |        |  |  |  |  |  |
| Predict                                                                    |        |  |  |  |  |  |
|                                                                            |        |  |  |  |  |  |
| Predicted Yield: 1.67 ton/ha<br>Predicted Water Productivity: 0.3960       |        |  |  |  |  |  |
| Model: KNN<br>Yield R <sup>a</sup> : 0.7738<br>WPy R <sup>a</sup> : 0.9294 |        |  |  |  |  |  |
| Explain Parameters Save Model Load Model                                   |        |  |  |  |  |  |

# CONTENT





# **PROBLEM STATEMENT:**

The Gezira Irrigation Scheme, despite its vast potential, faces significant challenges in optimizing wheat production and water use efficiency. Current wheat yields (3.18-4.02 t/ha) fall substantially short of the optimal range (6-9 t/ha) (FAO, 2020), while water productivity (0.32-0.45 kg/m<sup>3</sup>) remains below target levels (0.58 kg/m<sup>3</sup>) (Adam et al., 2021). These inefficiencies, coupled with water scarcity concerns, threaten food security and agricultural sustainability in Sudan (Al Zayed et al., 2015). Traditional methods of crop monitoring and yield estimation are often time-consuming, costly, and lack the spatial resolution **needed for targeted interventions** (Lobell, 2013). There is a critical need for innovative approaches to accurately assess crop areas, predict yields, and optimize water use across this large-scale irrigation scheme (Bastiaanssen and Steduto, 2017).



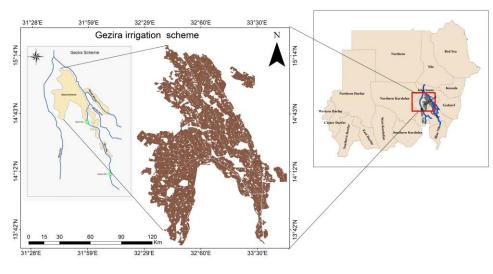
#### **Research Objectives:**

1.Develop and validate an accurate method for estimating wheat crop areas in the Gezira Irrigation Scheme using high-resolution satellite imagery and advanced classification techniques.

2.Assess the spatial variability of key productivity indicators across the scheme, including:

- 1. Actual Evapotranspiration (AETI)
- 2. Reference Evapotranspiration (RET)
- 3. Net Primary Production (NPP)
- 4. Above Ground Biomass (AGB)
- 5. Crop Yield
- 6. Water Productivity (WP)

3.Identify and analyze 'bright spots' of high performance within the scheme to understand factors contributing to superior wheat productivity and water use efficiency.4.Develop and compare multiple machine learning models for predicting wheat yield and water productivity, integrating remote sensing data with ground-truth information.

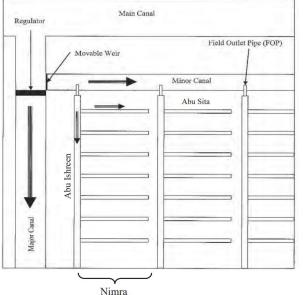

5. Quantify yield gaps and water productivity gaps across different irrigation divisions of the Gezira Scheme to prioritize areas for intervention.

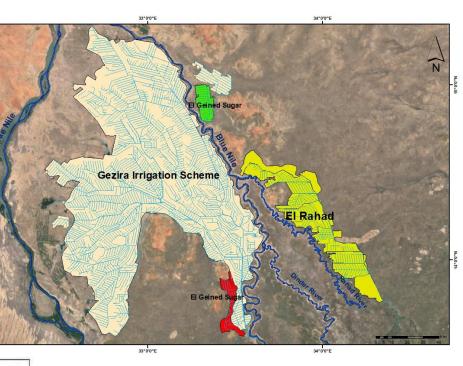

6. Investigate the relationship between management practices and productivity outcomes through analysis of farmer survey data from high-performing areas.

7. Evaluate the effectiveness of integrating remote sensing data (WaPOR) with ground-based measurements for agricultural monitoring in large irrigation schemes.

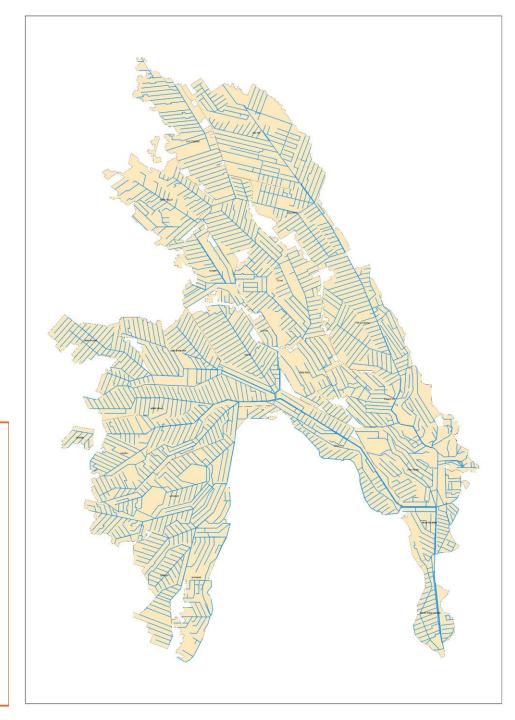
8. Develop evidence-based recommendations for improving wheat productivity and water use efficiency across the Gezira Irrigation Scheme.

### **OVERVIEW OF THE GEZIRA IRRIGATION SCHEME**




| Location<br>Size  | Central Sudan, between the Blue and White Nile rivers.<br>2.1 million feddans (approximately 882,000 hectares). |
|-------------------|-----------------------------------------------------------------------------------------------------------------|
|                   | 2.1 million feddans (approximately 882,000 hectares).                                                           |
|                   |                                                                                                                 |
| Established       | 1925, initially for cotton cultivation.                                                                         |
| Climate           | Semi-arid with significant reliance on seasonal flooding of the Blue Nile for irrigation.                       |
| Soil Type         | Heavy cracking clay soils (Vertisols), fertile but challenging due to moisture-related expansion and            |
|                   | contraction.                                                                                                    |
| Irrigation Source | Sennar Dam on the Blue Nile, providing regulated water flow.                                                    |
| Main Crops        | Cotton, wheat, sorghum, and groundnuts, Chickpea, vegetables                                                    |
| Water Management  | Network of canals distributing Nile water, critical for overcoming the semi-arid climate challenges             |

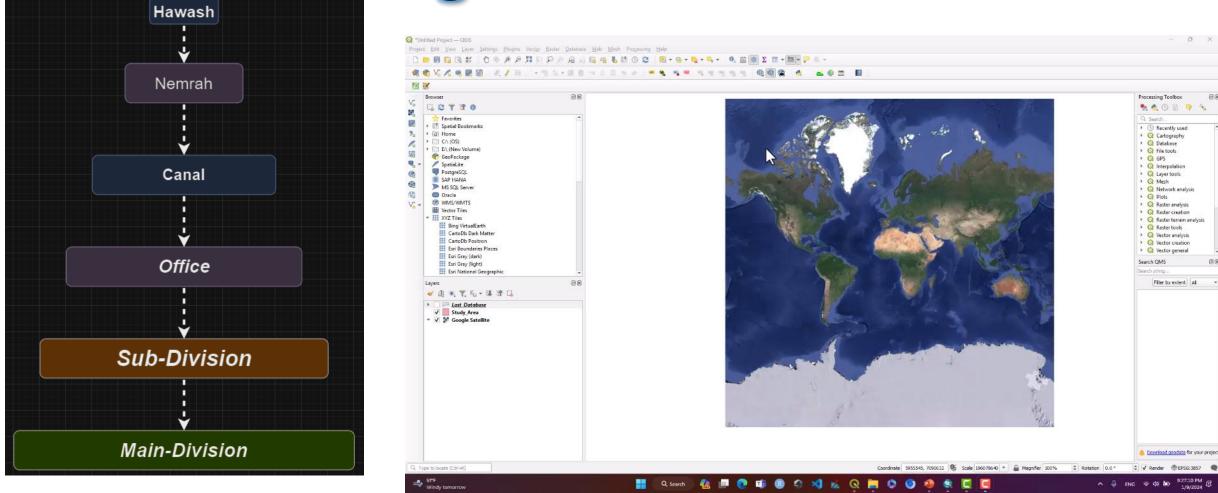

# overview of the Gezira Irrigation Scheme

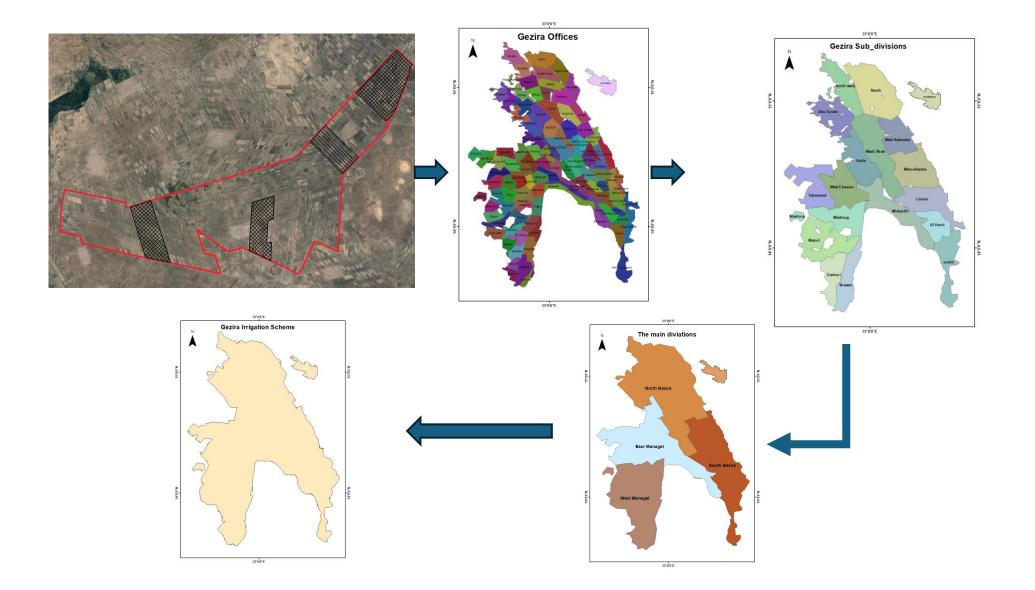
# Irrigation system:





• The scheme's irrigation system, fueled by the Sennar Dam, consists of two main canals – the Gezira and Managil – with capacities of 168 m<sup>3</sup>/s and 186 m<sup>3</sup>/s, respectively. Water is efficiently distributed through a network of major and minor canals to support equitable field irrigation.





# Canalization characteristics of the Gezira Scheme:



| Canal       | Number  | Capacity<br>(m <sup>3</sup> /s) | Average<br>width | Length<br>(km) |
|-------------|---------|---------------------------------|------------------|----------------|
|             |         | (111 / 5)                       | (m)              | (KIII)         |
| Main        | 2       | 354                             | 50               | 261            |
| Branch      | 11      | 25-120                          | 30               | 651            |
| Major       | 107     | 1.2-15                          | 20               | 1,650          |
| Minor       | 1,700   | 0.5-1.5                         | 6                | 8,120          |
| Abu Ishreen | 29,000  | 0.116                           | 1                | 40,000         |
| Abu Sitta   | 350,000 | 0.05                            | 0.5              | 100,000        |
|             |         |                                 |                  |                |

# Administrative Division of the Gezira Irrigation scheme :





#### Winter Crop Cultivation Schedule in the Gezira Irrigation Scheme



| 1  | 0.70           | 20        |    |
|----|----------------|-----------|----|
|    |                | ð.        |    |
| M- | and the second | ALC: NO   |    |
| YO | N-MARKS        | Marrie La | 动物 |

| E. |
|----|
|    |
| -  |
|    |
|    |

| →        | Crop       | Planting Date  | Harvest Date         |  |
|----------|------------|----------------|----------------------|--|
|          | Wheat      | Early November | Mid-March            |  |
| -        | Barley     | Mid-November   | Late April           |  |
| <b>→</b> | Pigeon pea | Late October   | Early May            |  |
|          | Chickpea   | Early December | Late March           |  |
|          | Vegetables | Late November  | Throughout<br>season |  |
|          | Cotton     | Early October  | Late March           |  |

Summer Crop Cultivation Schedule in the Gezira Irrigation Scheme

|           | Crop       | Planting Date | Harvest Date    |
|-----------|------------|---------------|-----------------|
|           | Maize      | Early May     | Late August     |
|           | Sorghum    | Mid-May       | Early September |
|           | Cotton     | Early October | Late March      |
| Groundnut |            | Early June    | Late October    |
|           | Vegetables | Various dates | Various dates   |



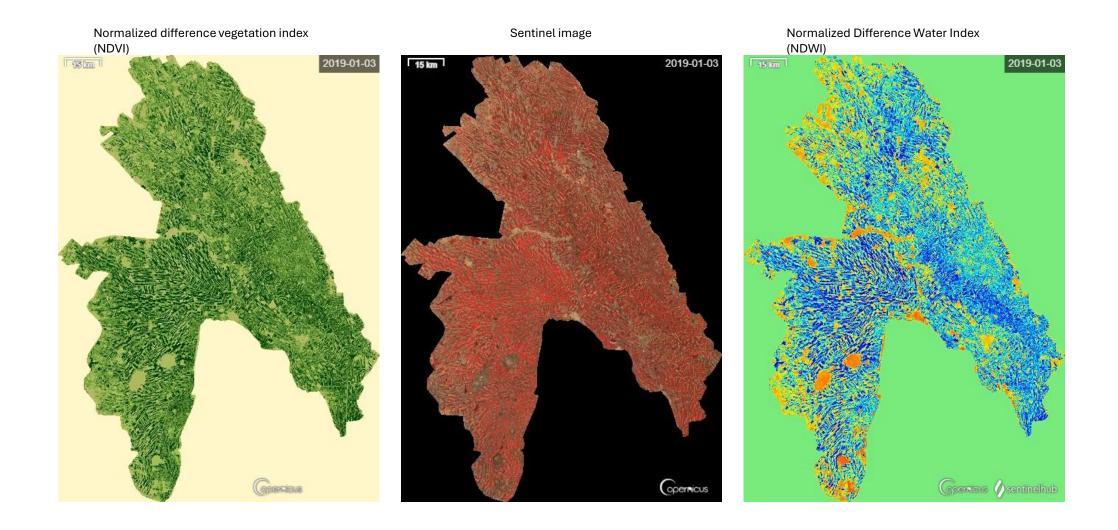


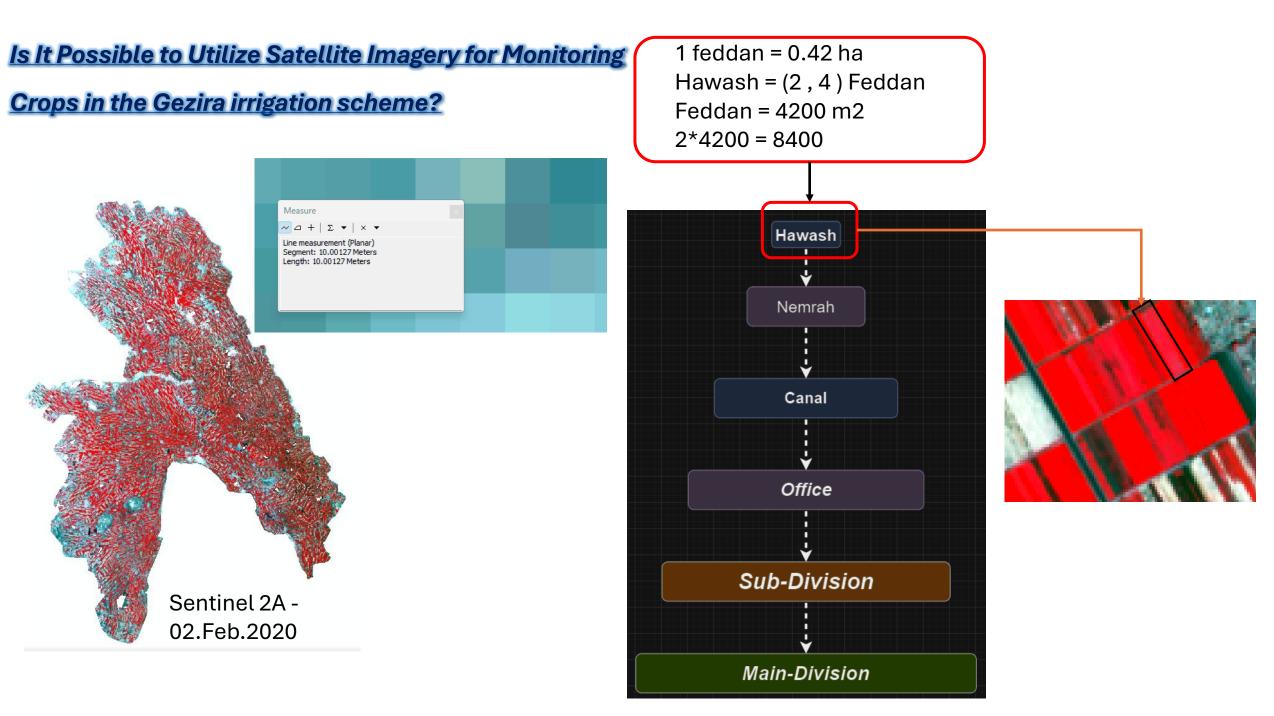


Groundnut

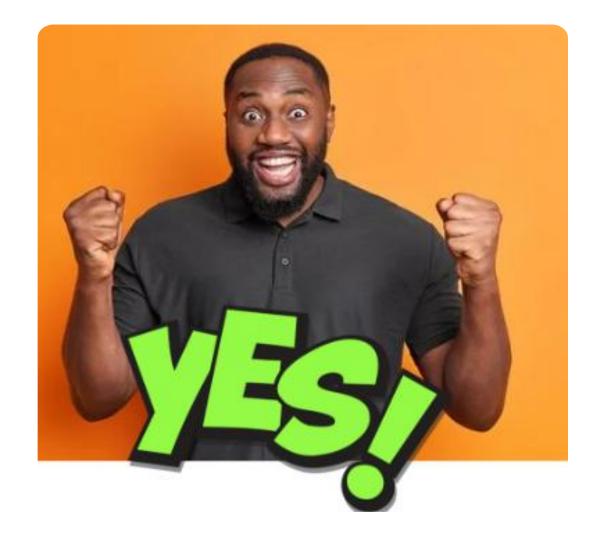
Maize

Chickpea

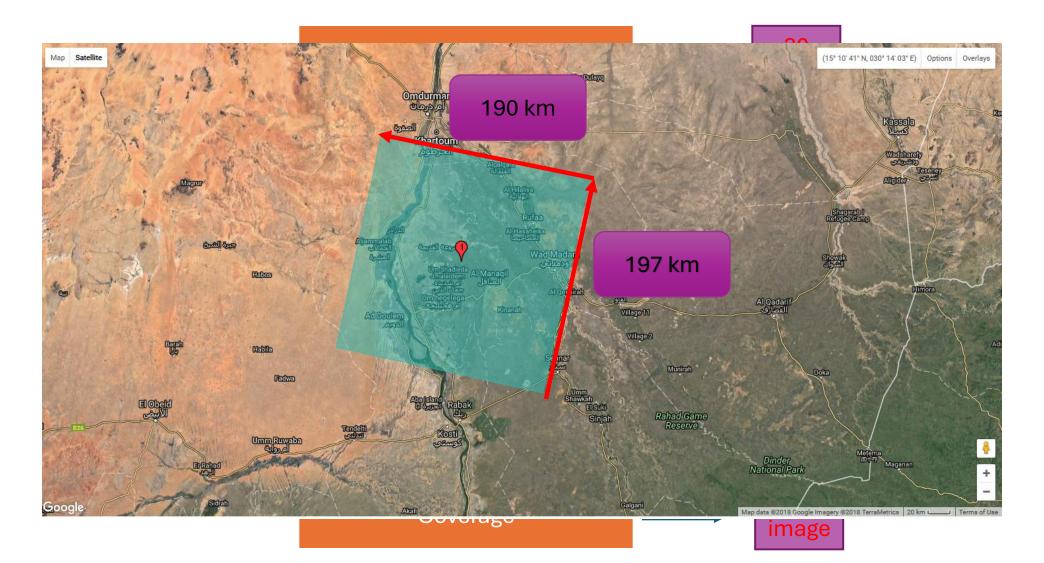

## Cotton

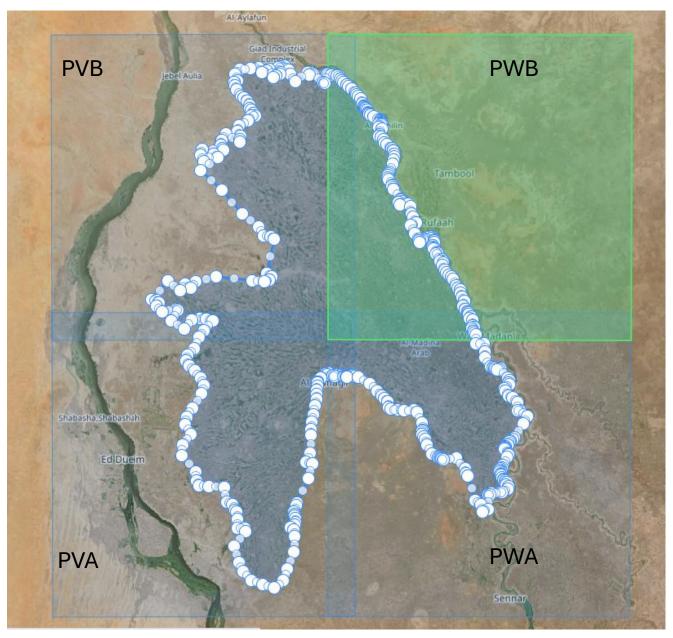



| Crop Name | Planting<br>Month | Germination<br>Stage (days) | Growth<br>Stage<br>(days) | Maturity<br>Stage<br>(days) | Harvest<br>Month |
|-----------|-------------------|-----------------------------|---------------------------|-----------------------------|------------------|
| Wheat     | November          | 5-8                         | 30-40                     | 90-120                      | March            |
| Barley    | November          | 5-7                         | 30-45                     | 90-110                      | April            |
| Chickpea  | December          | 7-14                        | 40-60                     | 90-120                      | March            |
| Cotton    | October           | 7-10                        | 50-70                     | 150-180                     | March            |

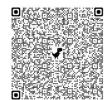

|   | Crop Name | Planting | Germination  | Growth Stage | Maturity     | Harvest   |
|---|-----------|----------|--------------|--------------|--------------|-----------|
| - |           | Month    | Stage (days) | (days)       | Stage (days) | Month     |
| ę | Sorghum   | May      | 3-5          | 35-50        | 95-110       | September |
|   | Maize     | May      | 4-7          | 45-60        | 80-100       | August    |
|   | Groundnut | June     | 10-14        | 40-60        | 120-150      | October   |
|   | Cotton    | October  | 7-10         | 50-70        | 150-180      | March     |

# Summer & Winter Crop Cultivation Schedule in the Gezira Irrigation Scheme :



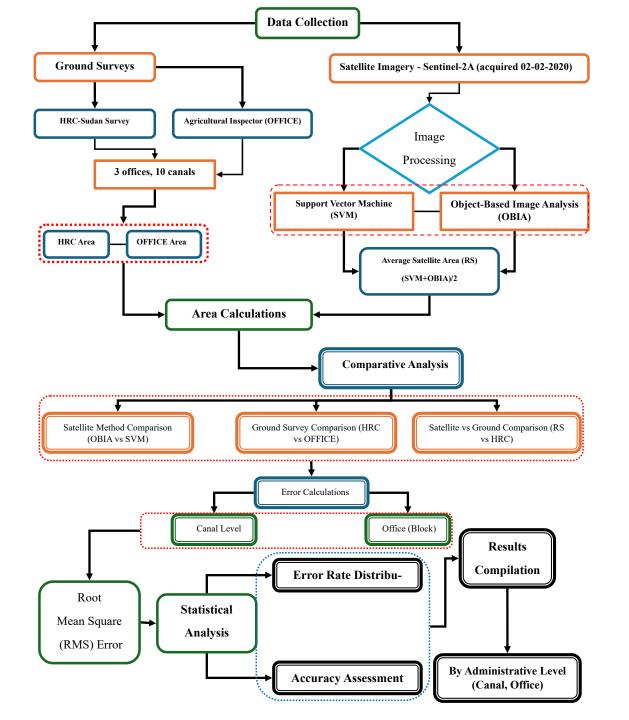

Is It Possible To Utilize Satellite Imagery For Monitoring Crops In The Gezira Irrigation Scheme?




#### Landsat 8 Satellite

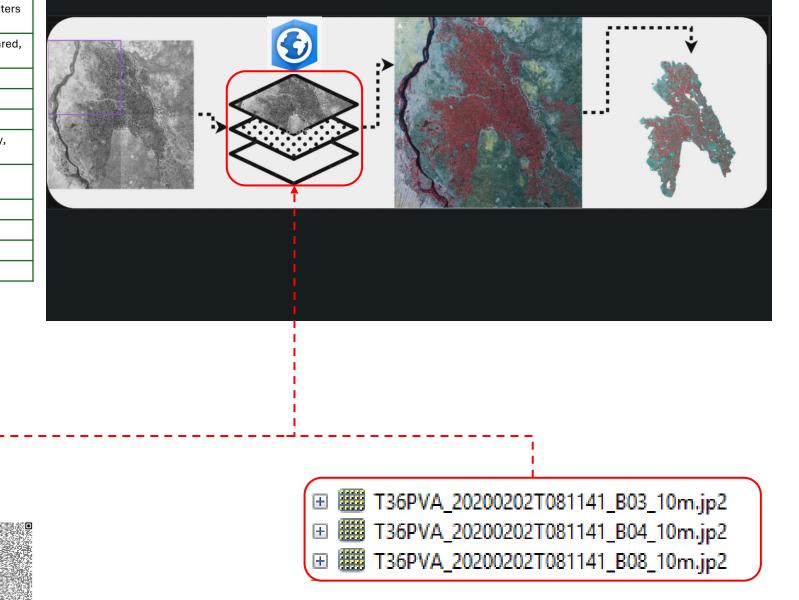




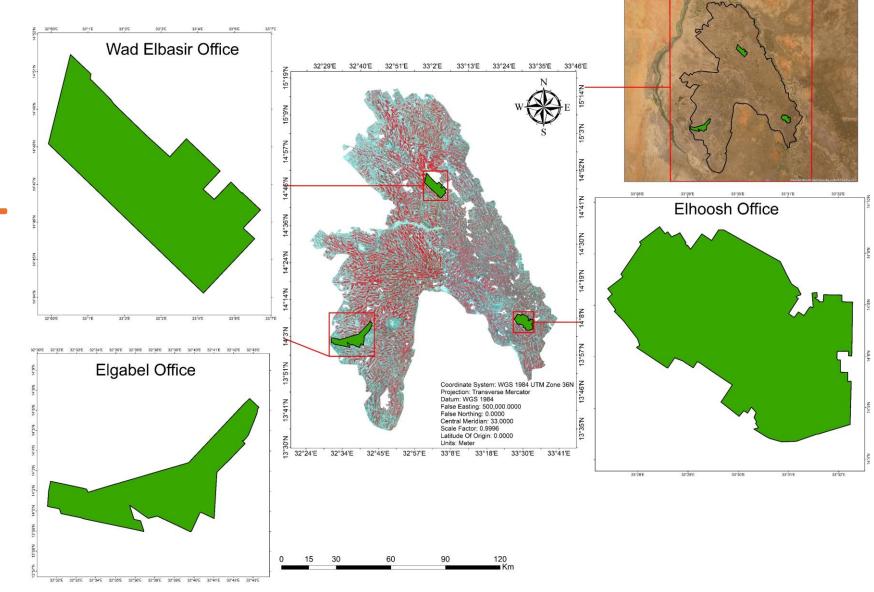

|           | S2A_MSIL2A_20200202T081141_N0500_F<br>_20230621T114856.SAFE<br>Mission: SENTINEL-2 Instrument: MSI<br>Sensing time: 2020-02-02T08:11:41.024Z | -            |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Visualize | SENTINEL-2 MSI S2MSI2A                                                                                                                       | 0 0 🗳 🗳 🕹    |
|           | S2A_MSIL2A_20200202T081141_N0500_F<br>_20230621T114856.SAFE                                                                                  | R078_T36PWA  |
|           | Mission: SENTINEL-2 Instrument: MSI<br>Sensing time: 2020-02-02T08:11:41.024Z                                                                | Size: 1111MB |
| Visualize | SENTINEL-2 MSI S2MSI2A                                                                                                                       | 0 0 🗗 🕹      |
| 199       | S2A_MSIL2A_20200202T081141_N0500_F<br>20230621T114856.SAFE                                                                                   | R078_T36PVB  |
| 1         | Mission: SENTINEL-2 Instrument: MSI<br>Sensing time: 2020-02-02T08:11:41.024Z                                                                | Size: 1126MB |
| Visualize | SENTINEL-2 MSI S2MSI2A                                                                                                                       | 0 0 🗗 🕹      |
|           | S2A_MSIL2A_20200202T081141_N0500_F<br>20230621T114856.SAFE                                                                                   | R078_T36PVA  |
| 14        | Mission: SENTINEL-2 Instrument: MSI<br>Sensing time: 2020-02-02T08:11:41.024Z                                                                | Size: 1119MB |
| Visualize | SENTINEL-2 MSI S2MSI2A                                                                                                                       | 6 0 🖬 🕹      |






#### **Importance of Wheat Production in Sudan**

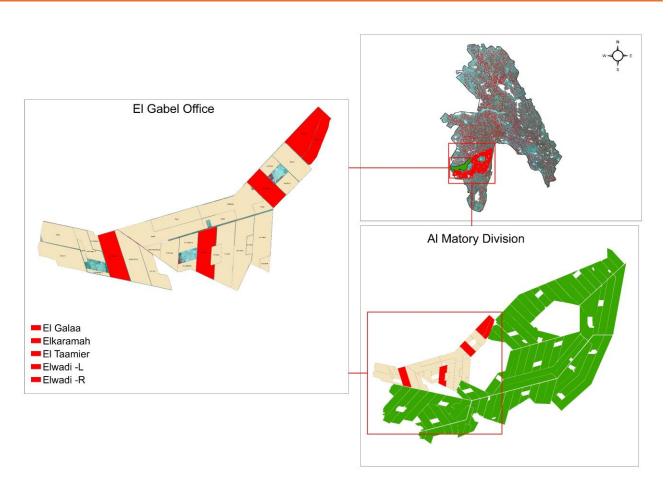
- 1. Food Security and Import Reduction
- 2. Economic Impact and Rural Livelihoods
- 3. Strategic Crop for Agricultural Development
- 4. Climate Adaptation and Crop Diversification

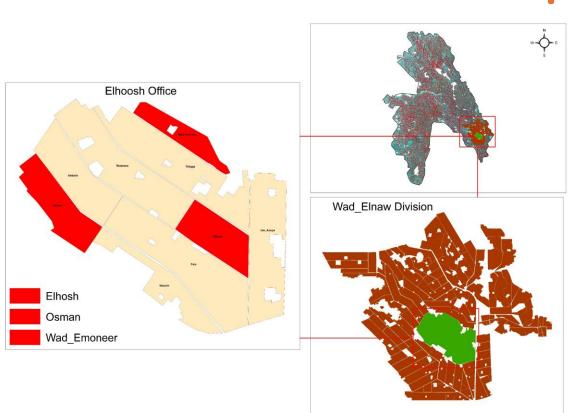





| Attribute                     | Description                                        |                                                                                                   |              |  |  |
|-------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------|--|--|
| Satellite Name                | Sentinel-2                                         |                                                                                                   |              |  |  |
| Mission                       | Earth observation                                  | Earth observation                                                                                 |              |  |  |
| Launch Dates                  |                                                    | Sentinel-2A: 23 June 2015<br>Sentinel-2B: 7 March 2017                                            |              |  |  |
| Spatial Resolution            |                                                    | 10 meters (VNIR), 20 meters (Red Edge and SWIR), 60 meters (Coastal/Aerosol, Water Vapor, Cirrus) |              |  |  |
| Spectral Bands                | -                                                  | 13 bands covering visible, near-infrared, short-wave infrare and atmospheric content              |              |  |  |
| Temporal Resolution           | 5 days at the equator (w                           | 5 days at the equator (with both satellites operating)                                            |              |  |  |
| Swath Width                   | 290 km                                             |                                                                                                   |              |  |  |
| Data Accessibility            | Open access through th                             | e Copernicus Ope                                                                                  | n Access Hub |  |  |
| Applications                  | Land cover classificatio<br>disaster management, v |                                                                                                   |              |  |  |
| Processing Levels             |                                                    | Level-1C (Top-of-Atmosphere Reflectance), Level-2A<br>(Bottom-of-Atmosphere Reflectance)          |              |  |  |
| Revisit Time                  | 5 days                                             | 5 days                                                                                            |              |  |  |
| Data Format                   | GeoTIFF                                            | GeoTIFF                                                                                           |              |  |  |
| Orbit Altitude                | 786 km                                             |                                                                                                   |              |  |  |
| Inclination                   | 98.62°                                             |                                                                                                   |              |  |  |
| Sentinel-2 Bands              | Central Wavelength (µm)                            | Resolution (m)                                                                                    |              |  |  |
| Band 1 - Coastal aerosol      | 0.443                                              | 60                                                                                                |              |  |  |
| Band 2 - Blue                 | 0.490                                              | 10                                                                                                |              |  |  |
| Band 3 - Green                | 0.560                                              | 10                                                                                                |              |  |  |
| Band 4 - Red                  | 0.665                                              | 10                                                                                                |              |  |  |
| Band 5 - Vegetation Red Edge  | 0.705                                              | 20                                                                                                |              |  |  |
| Band 6 - Vegetation Red Edge  | 0.740                                              | 20                                                                                                |              |  |  |
| Band 7 - Vegetation Red Edge  | 0.783                                              | 20                                                                                                |              |  |  |
| Band 8 - NIR                  | 0.842                                              | 10                                                                                                |              |  |  |
| Band 8A - Vegetation Red Edge | 0.865                                              | 20                                                                                                |              |  |  |
| Band 9 - Water vapour         | 0.945                                              | 60                                                                                                |              |  |  |
| Band 10 - SWIR - Cirrus       | 1.375                                              | 60                                                                                                |              |  |  |
| Band 11 - SWIR                | 1.610                                              | 20                                                                                                |              |  |  |
| Band 12 - SWIR                | 2.190                                              | 20                                                                                                |              |  |  |



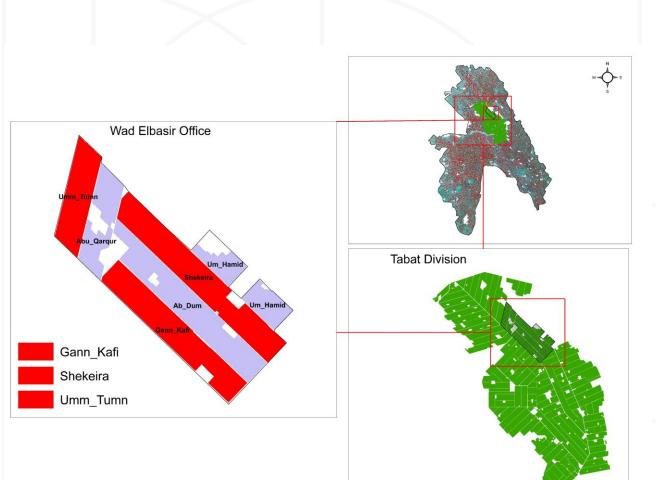

• Three offices within the Gezira Scheme were selected based on their semigeographical distribution within the Scheme area. We assumed that these three offices approximately represent the entire Gezira Scheme. The selected offices are Elhoosh, Wad Elbasir, and Elgabel.




# Elgabel Office:

Elgabel Office 74 is located within the Al Matory Division . area of Elgabel Office is approximately 18,939 Feddan and consists of 18 canals . Table (...) lists the names of the canals in Elgabel Office and the number of Nemra for each canal includes .Elgabel Office is irrigated by the Dawrah and Alazozab Major. The administrative boundaries of Elgabel Office were determined in collaboration with the Division inspector and the office inspector (Division Inspector: Eng. Jamal Al Nouri, Office Inspector: Eng. Al Tijani) on 12/06/2016.

| No. canal  | Cana Name No. of Nemra |    | Canal Area/<br>Feddan |  |
|------------|------------------------|----|-----------------------|--|
| 1          | ElWadi-R               | 13 | 1586                  |  |
| •          | ElWadi-L               | 13 | 1360                  |  |
| 2          | Elbilad                | 10 | 888                   |  |
| 3          | Abulkram               | 10 | 625                   |  |
| 4          | ElTaamier              | 10 | 891                   |  |
| 5          | Elbaladia              | 16 | 1430                  |  |
| 6          | Kereif                 | 36 | 2714                  |  |
| 7          | Um Sabla               | 15 | 1138                  |  |
| 8          | El Gaba                | 17 | 1374                  |  |
| 9          | El Ndra                | 16 | 1272                  |  |
| 10         | El Galaa               | 13 | 1083                  |  |
| 11         | EL metemira            | 9  | 560                   |  |
| 12         | 12 El Chazal           |    | 1083                  |  |
| 13         | 13 DXX/A El Chazal     |    |                       |  |
| 14         | 14 Um Laot             |    | 671                   |  |
| 15         | Bashir Elzein          | 14 | 1135                  |  |
| 16         | ElKaramah              | 13 | 1106                  |  |
| 17         | Um Halaga              | 13 | 741                   |  |
| 18         | Ussar                  | 10 | 1044                  |  |
| 10         | Rizig                  | 10 | 1044                  |  |
| Total Area |                        |    | 18939                 |  |






#### • <u>Elhoosh Office :</u>

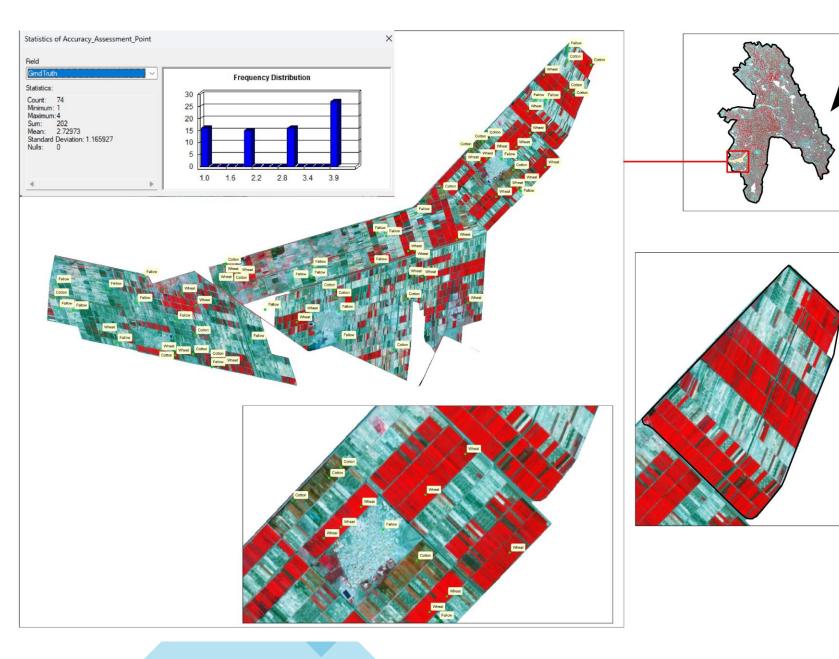
Elhoosh Office is located in the southern part of the Gezira Scheme . within Wad Elnaw Division . area of Elhoosh Office is approximately 14,440 Feddan and consists of 9 canals . lists the names of the canals in Elhoosh Office and the number of Nemra each canal includes. Elhoosh Office is irrigated by the Al-Hayawan and Nasim Major, which takes water from the 57 Weir. The administrative boundaries of Elhoosh Office were determined in collaboration with the office inspector (Inspector: Salah Hamdan) on 22/02/2016.

| No. canal | Cana Name   | No. of Nemra | Canal Area/ Feddan |
|-----------|-------------|--------------|--------------------|
| 1         | Nassim      | 19           | 884                |
| 2         | Osman       | 18           | 1072               |
| 3         | Fam         | 21           | 2316               |
| 4         | Abdalla     | 16           | 1235               |
| 5         | Elhosh      | 12           | 961                |
| 6         | Reweena     | 21           | 1858               |
| 7         | Tabgga      | 24           | 1954               |
| 8         | Wad_Emoneer | 14           | 618                |
| 9         | Um_Asspa    | 20           | 1593               |
|           | Total Area  |              | 12491              |



#### • Wad EL Basir Office

Wad Al Basir Office is located in the northern part of the Gezira Scheme. within Tabat Division and covers an area of approximately 16,000 Feddan. The office consists of 6 canals. and is irrigated by the Major of Al-Muraibiya.


#### No canal Cana Name

No of Nemra Canal Area/ Feddan

| 1 | Gann_Kafi  | 31 | 2714  |
|---|------------|----|-------|
| 2 | Ab_Dum     | 36 | 2912  |
| 3 | Shekeira   | 39 | 3264  |
| 4 | Um_Hamid   | 17 | 1281  |
| 5 | Abu_Qarqur | 17 | 1276  |
| 6 | Umm_Tumn   | 18 | 144   |
|   | Total Area |    | 11591 |

| Code                                    | Equation Name             | Equation                   | Description                                                 |
|-----------------------------------------|---------------------------|----------------------------|-------------------------------------------------------------|
| HRC                                     | HRC Area                  | HRC                        | Area surveyed by the Hydraulics Research Center             |
| OFFICE                                  | Office Area               | OFFICE                     | Area surveyed by the agricultural inspector                 |
| SVM                                     | Satellite Area (Method 1) | SVM                        | Area obtained from the satellite (Method 1)                 |
| OBIA                                    | Satellite Area (Method 2) | OBIA                       | Area obtained from the satellite (Method 2)                 |
| RS                                      | Average Satellite Area    | (SVM + OBIA) / 2           | Average area obtained from the satellite using both methods |
| Diff OBIA SVM                           | Difference OBIA SVM       | (OBIA - SVM) / OBIA * 100  | Percentage difference between OBIA and SVM areas            |
| Avg. SVM OBIA                           | Average SVM OBIA          | (SVM + OBIA) / 2           | Average area between SVM and OBIA                           |
| Diff HRC Office                         | Difference HRC Office     | (HRC - OFFICE) / HRC * 100 | Percentage difference between HRC and Office areas          |
| Diff RS HRC                             | Difference RS HRC         | (RS - HRC) / RS * 100      | Percentage difference between RS and HRC areas              |
| Diff C (Gardens/Chickpea/Cotton/Other ) | Cotton Difference         | (HRC - RS) / 2 * 100       | Percentage difference for cotton crop                       |
| Diff W (Wheat)                          | Wheat Difference          | (HRC - RS) / 2 * 100       | Percentage difference for wheat crop                        |





# Area surveyed by the Hydraulics

N

| Research Center |           |           |              |  |
|-----------------|-----------|-----------|--------------|--|
| Elwadi_L        |           |           |              |  |
| Nemrah          | Wheat (F) | Onion (F) | pigeo pea(F) |  |
| 1               | 100       | 3         |              |  |
| 2               | 106       | 8.5       |              |  |
| 3               | 36        | 7.5       |              |  |
| 4               | 13.5      | 0         |              |  |
| 5               | 1.5       | 0         |              |  |
| 6               | 100       | 0         |              |  |
| 7               | 81        | 6         |              |  |
| 8               | 56        | 4.5       |              |  |
| 9               | 0         | 3         | 3            |  |
| 10              | 6         | 0         | 3            |  |
| 11              | 6         | 0         | 0            |  |
| 12              | 9         | 0         | 0            |  |
| 13              | 0         | 0         | 0            |  |
| Total           | 515       | 32.5      | 6            |  |

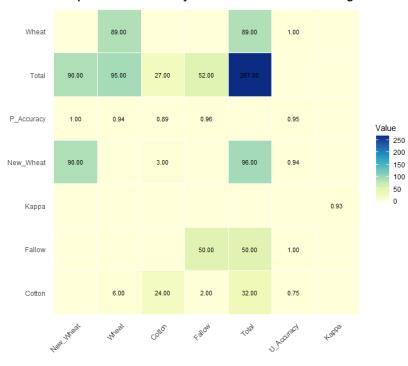


support vector machines-Canal

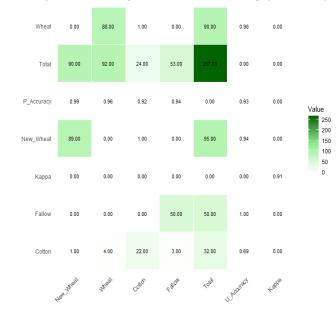
Object-based Image Analysis (OBIA)-Canal

Wheat

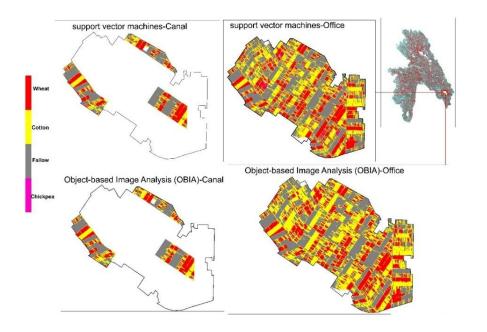
Cotton

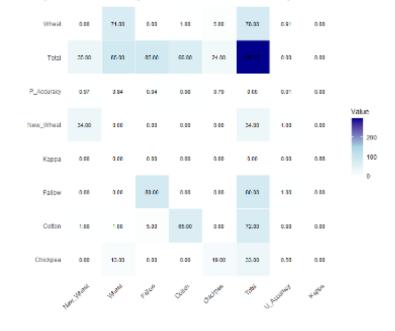

Fallow

Chickpea

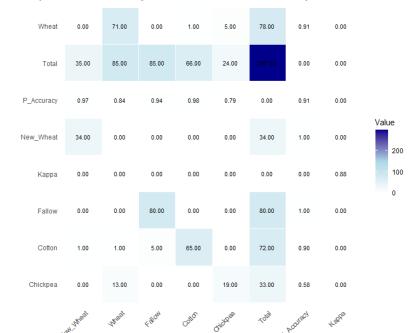

support vector machines-Office

Object-based Image Analysis (OBIA)-Office

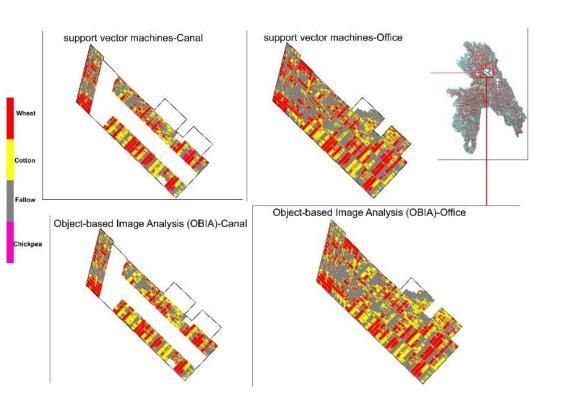

Comprehensive Accuracy Assessment of Classified Image

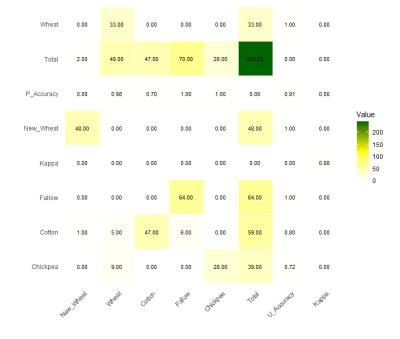



Comprehensive Accuracy Assessment of Classified Image (OBIA Method)






#### Comprehensive Accuracy Assessment of Multi-Class Crop Classification-SVM



#### Revised Comprehensive Accuracy Assessment of Multi-Class Crop Classification-SVM





#### Comprehensive Accuracy Assessment of Multi-Class Crop Classification-OBIA



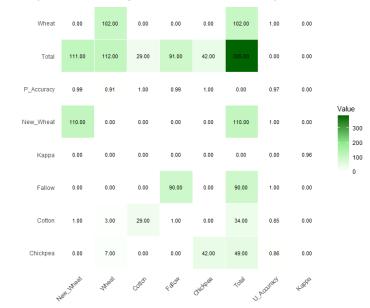
32°29'E

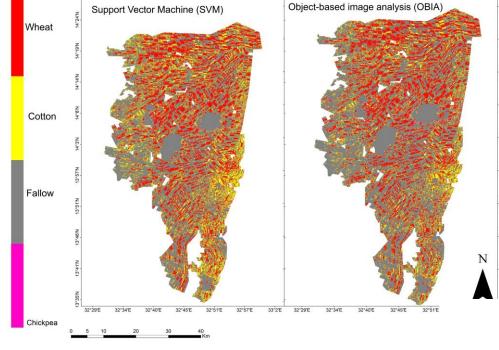
32°34'E

32°40'E

32°45'E

32°51'E


32°57'E


33°2'E

Comprehensive Accuracy Assessment of Multi-Class Crop Classification-SVm

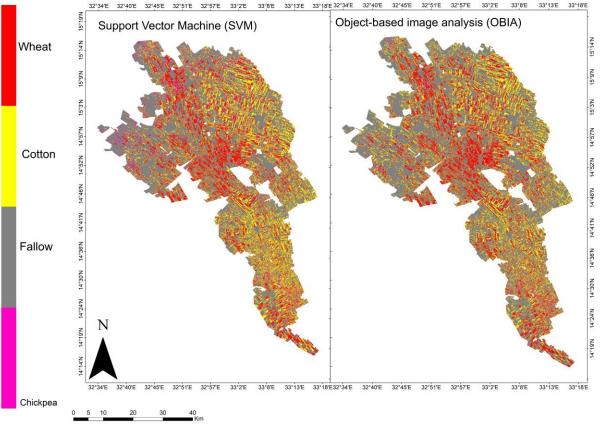


Comprehensive Accuracy Assessment of Multi-Class Crop Classification-OBIA



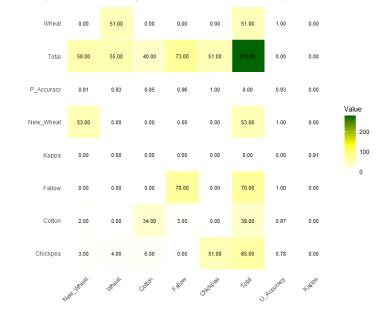


32°40'E

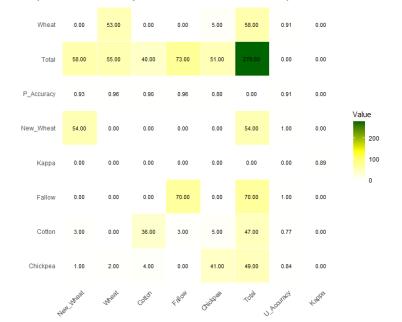

32°45'E

32°51'E

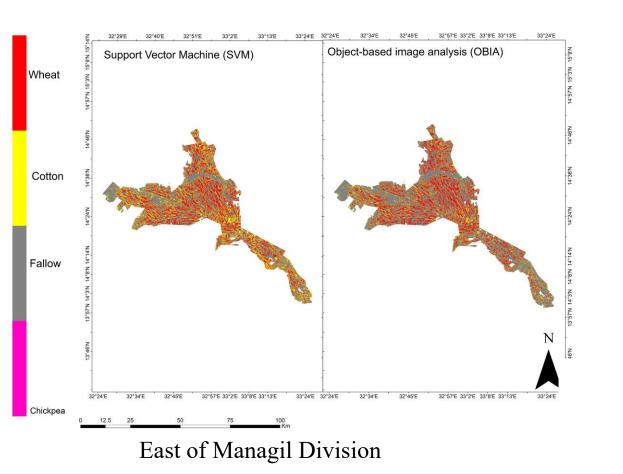
32°57'E


33°2'E

Weast of Managil Division

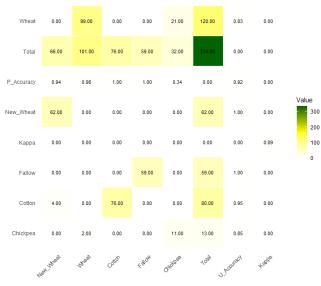


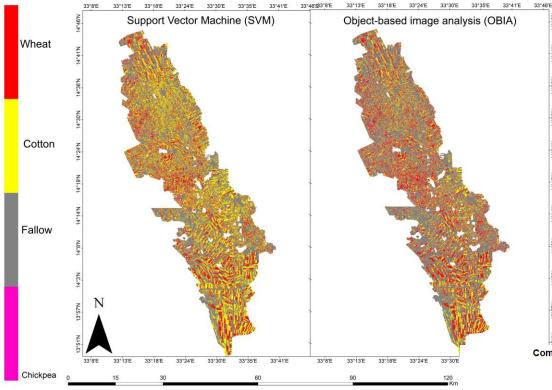

North of Gezira Division


Comprehensive Accuracy Assessment of Multi-Class Crop Classification-SVM

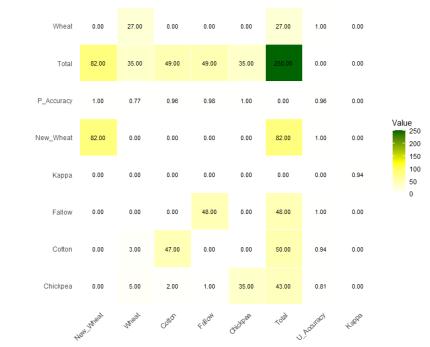


Comprehensive Accuracy Assessment of Multi-Class Crop Classification-OBIA

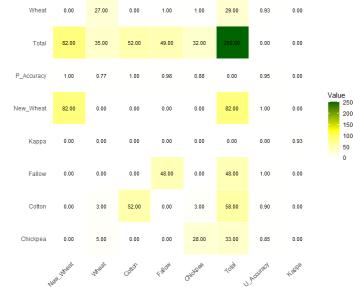




Comprehensive Accuracy Assessment of Multi-Class Crop Classification-SVM





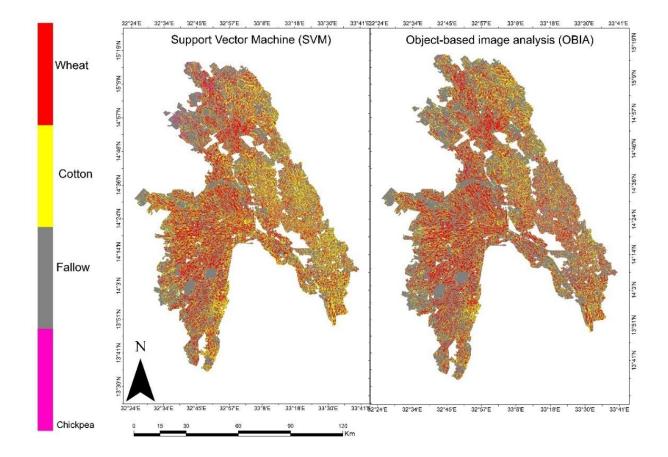

#### Comprehensive Accuracy Assessment of Multi-Class Crop Classification-OBIA






South of Gezira Division




Comprehensive Accuracy Assessment of Multi-Class Crop Classification-OBIA



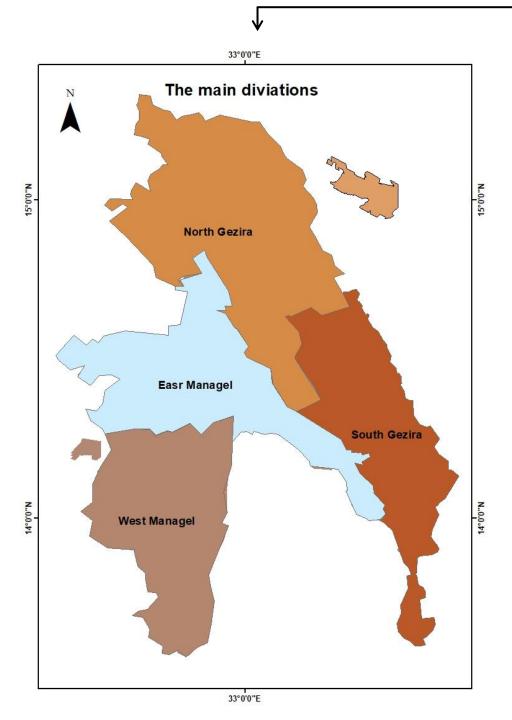
#### Comprehensive Accuracy Assessment of Multi-Class Crop Classification-SVM

| West of Managil               | SVM        | OBIA       | Average area calculated by satellite imagery ("SVM+OBIA"/2) |  |
|-------------------------------|------------|------------|-------------------------------------------------------------|--|
|                               | (Feddan)   | (Feddan)   |                                                             |  |
| Wheat                         | 176863.286 | 164323.200 | 170593.243                                                  |  |
| Gardens/Chickpea/Cotton/Other | 142239.452 | 115788.310 | 129013.881                                                  |  |
| East Of Mangil                |            |            |                                                             |  |
| Wheat                         | 140993.619 | 130827.766 | 135910.693                                                  |  |
| Gardens/Chickpea/Cotton/Other | 122679.738 | 79971.611  | 101325.675                                                  |  |
| South of Gezira               |            |            |                                                             |  |
| Wheat                         | 75547.786  | 70655.049  | 73101.417                                                   |  |
| Gardens/Chickpea/Cotton/Other | 176346.952 | 134895.531 | 155621.242                                                  |  |
| North of Gezira               |            |            |                                                             |  |
| Wheat                         | 147262.024 | 150789.025 | 149025.525                                                  |  |
| Gardens/Chickpea/Cotton/Other | 259932.738 | 216676.545 | 238304.642                                                  |  |
| Total                         |            |            |                                                             |  |
| Wheat                         | 528630.877 |            |                                                             |  |
| Gardens/Chickpea/Cotton/Other | 624265.439 |            |                                                             |  |

## **Results: Crop Classification for All Scheme**



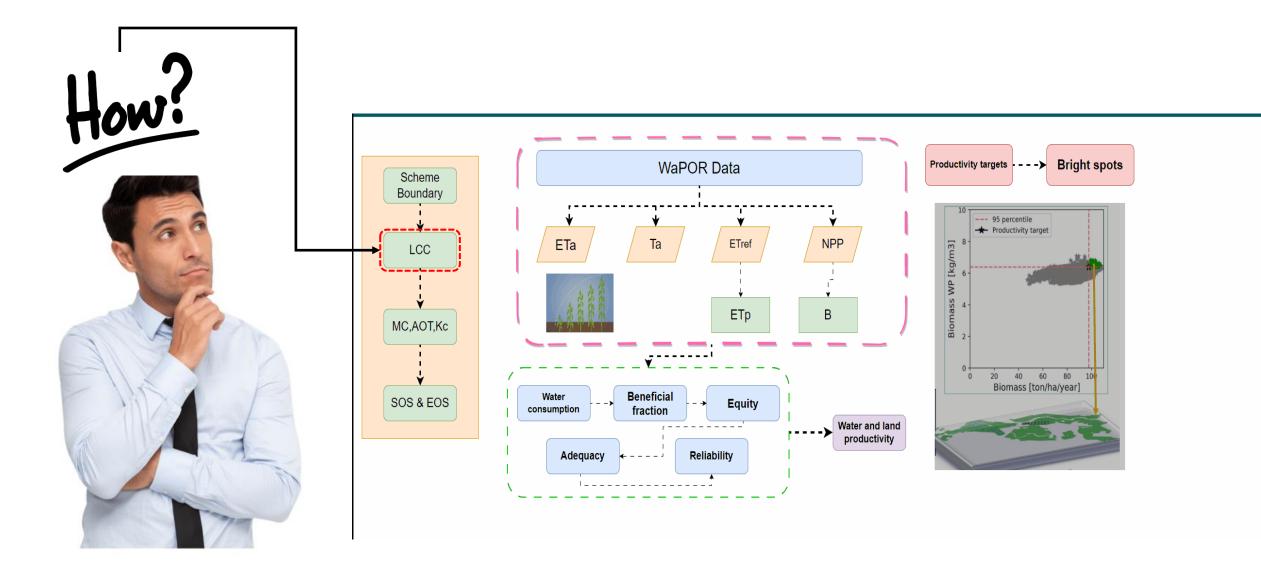
| Crop Category                 | Office Gezira (Feddan) | RS Estimate (Feddan) |
|-------------------------------|------------------------|----------------------|
| Wheat                         | 495,132                | 528,630.877          |
| Gardens/Chickpea/Cotton/Other | 595,419                | 624,265.439          |
|                               |                        |                      |
| Total Cultivated Lands        | 1,090,551              | 1,152,896.32         |



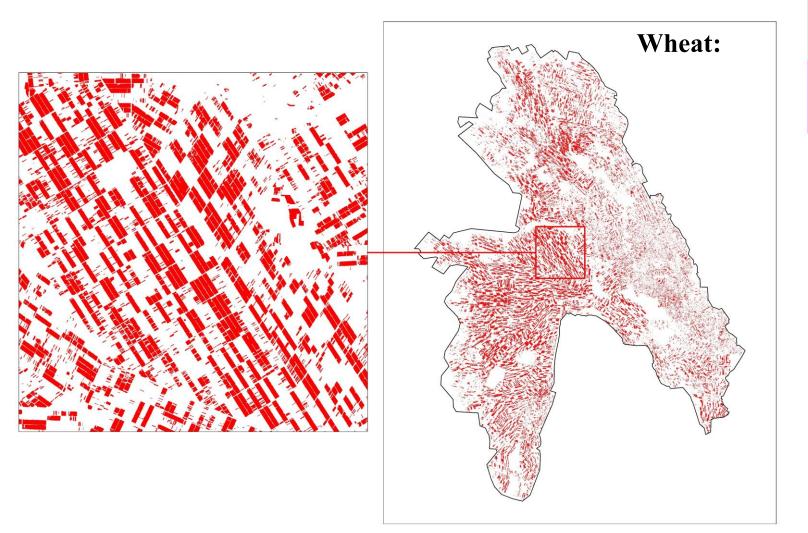

## WaPOR Data Downloading Data

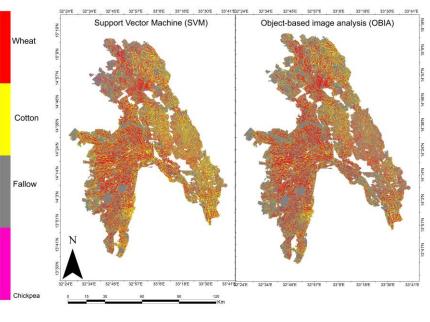
| WAPOR.v2_dekadal_L1_PCP_D  | 6/29/2024 1:01 PM | File folder |
|----------------------------|-------------------|-------------|
| WAPOR.v2_dekadal_L1_RET_D  | 6/29/2024 1:01 PM | File folder |
| WAPOR.v2_dekadal_L2_AETI_D | 6/29/2024 1:01 PM | File folder |
| WAPOR.v2_dekadal_L2_NPP_D  | 6/29/2024 1:01 PM | File folder |
| WAPOR.v2_dekadal_L2_T_D    | 6/29/2024 1:01 PM | File folder |
| WAPOR.v2_yearly_L2_LCC_A   | 6/29/2024 1:01 PM | File folder |

#### https://colab.research.google.com/drive/1o7OGTvTn7NB\_LN5vBvZ9LKzSbT0k7sg0


| No. | WaPOR Data                         | Definition                                                                | Spatial resolution | Temporal<br>resolution | Units     | Temporal<br>coverage | Reference                            |
|-----|------------------------------------|---------------------------------------------------------------------------|--------------------|------------------------|-----------|----------------------|--------------------------------------|
| 1   | Evapotranspiration                 | Total water consumed through evaporation, transpiration, and interception | 100 m              | 10-day                 | mm/dekad  | 2009 - present       | WaPOR Database<br>Methodology (2020) |
| 2   | Transpiration (T)                  | Water consumed by plants and released as vapor                            | 100 m              | 10-day                 | mm/dekad  | 2009 - present       | WaPOR Database<br>Methodology (2020) |
| 3   | Net Primary Production (NPP)       | Rate of biomass production by plants                                      | 100 m              |                        | gC/m²/day | 2009 - present       | Running et al. (2004)                |
| 4   | Land cover classification (LCC)    | Categorization of land surface cover types                                | 100 m              | Annual                 | N/A       | 2009 - present       | WaPOR Database<br>Methodology (2020) |
| 5   | Precipitation (PCP)                | Amount of water falling as rain or snow                                   | 5 km               |                        | mm/dekad  | 2009 - present       | WaPOR Database<br>Methodology (2020) |
| 6   | Reference Evapotranspiration (RET) | ET from a hypothetical grass reference crop                               | 20 km              | Daily                  | mm/day    | 2009 - present       | Allen et al. (1998)                  |




## <u>What Information is Required to Compute Water Productivity</u> (WP)?


#### Bright spots WaPOR Data Productivity targets - - - -> Scheme Boundary -- 95 percentile + Productivity target Та ETref NPP ETa Biomass WP [kg/m3] LCC ЕТр В MC,AOT,Kc \_ . ----20 40 60 80 Biomass [ton/ha/year] Water Beneficial SOS & EOS Equity consumption fraction Water and land ---> productivity Reliability Adequacy \_ \_ \_ J 1\_\_\_\_\_ In [18]: M df\_dates = pd.read\_excel('../Data/df\_SosEos.xlsx') df\_dates Out[18]: SOS EOS Seasons 1 2019-10-07 2020-04-26 0

|                                    |                                       | Schen<br>Bounda<br>LCC<br>MC,AO <sup>T</sup><br>SOS & E | T,KC<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP<br>B<br>NPP |
|------------------------------------|---------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SOS: Start of season= (07/10/2019) | AOI: above ground ove biomass= (0.85) | er total                                                | •HI: Harvest Index Definition: The ratio of grain yield to total above-ground biomass, indicating the efficiency of converting biomass into harvestable yield, Value: 0.36 (36% of above-ground biomass is harvestable grain)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EOS: End of season = (26/04/2020)  | MC: Moisture content ratio= (0        | 0.15)                                                   | •Avg_Kc: Average Crop Coefficient Definition: A factor that relates the reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Avg_Kc: crop factor = 0.85         |                                       |                                                         | evapotranspiration to crop evapotranspiration, representing the integrated effects of crop characteristics on water use ,Value: 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| HI: harvest index= (0.36)          |                                       |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



LCLU:





All Crops:

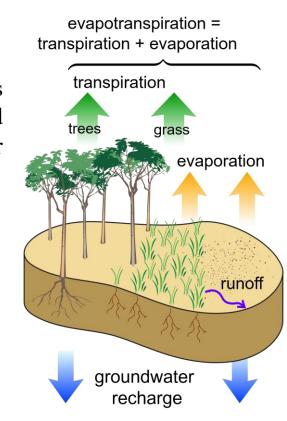
## 2-Water management indicators -Seasonal Actual Evapotranspiration (ETa,s)

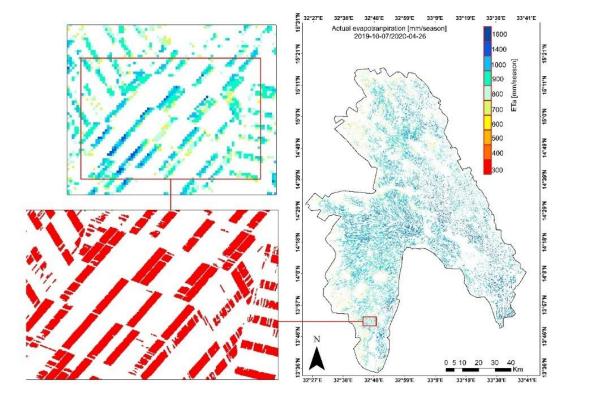
Seasonal Actual Evapotranspiration (ETa,s) is the cumulative amount of water that is transferred from the land surface to the atmosphere through evaporation from the soil and transpiration from plants over the course of a growing season. It represents the actual water consumption by crops and the surrounding soil under real-world conditions.

Seasonal Actual Evapotranspiration  $ET_{a,s} = \sum_{SOS}^{EOS} ET_a$ 

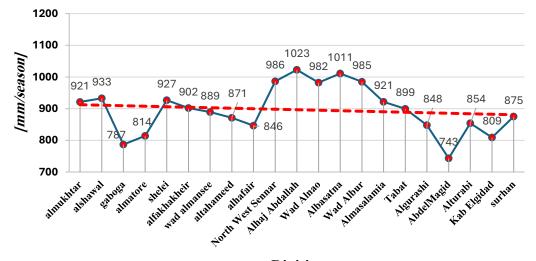
Potential Evapotranspiration ETc = ETo \* Kc

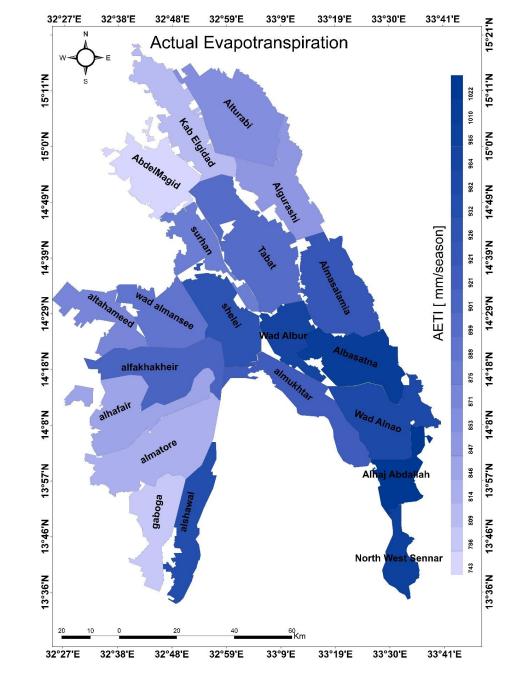
Where:


ETa,s = Actual evapotranspiration

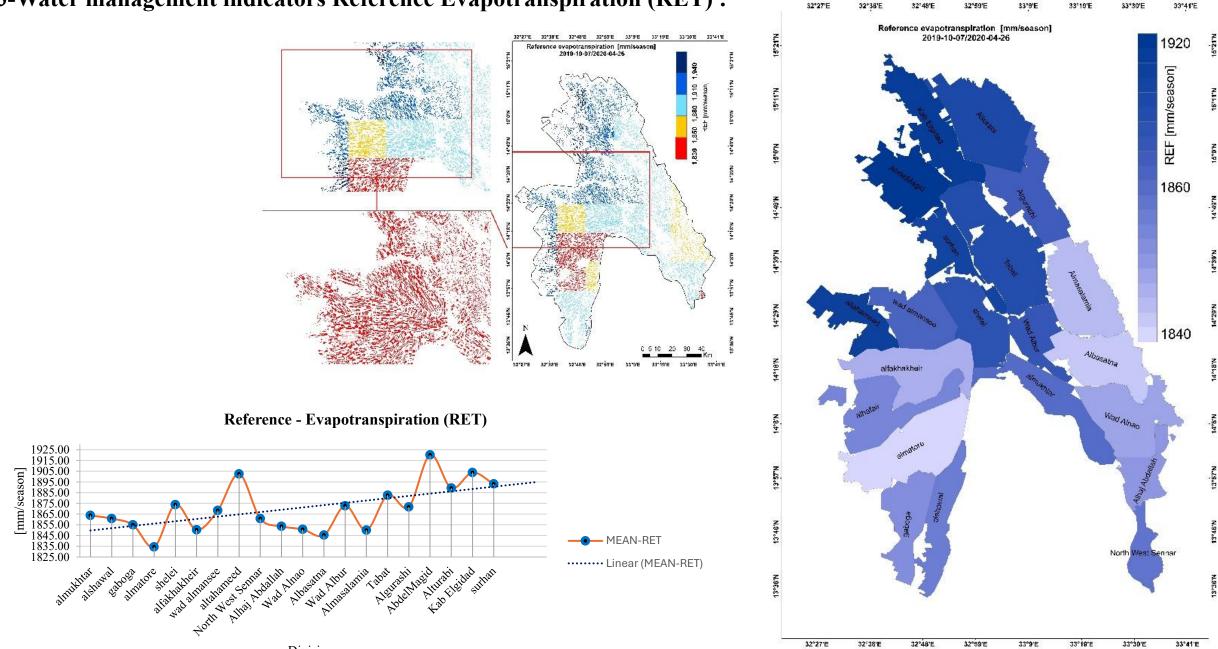

SOS = Start of season

EOS = End of season


ETo = Reference evapotranspiration


Kc = Crop coefficient






#### Actual Evapotranspiration





Divition



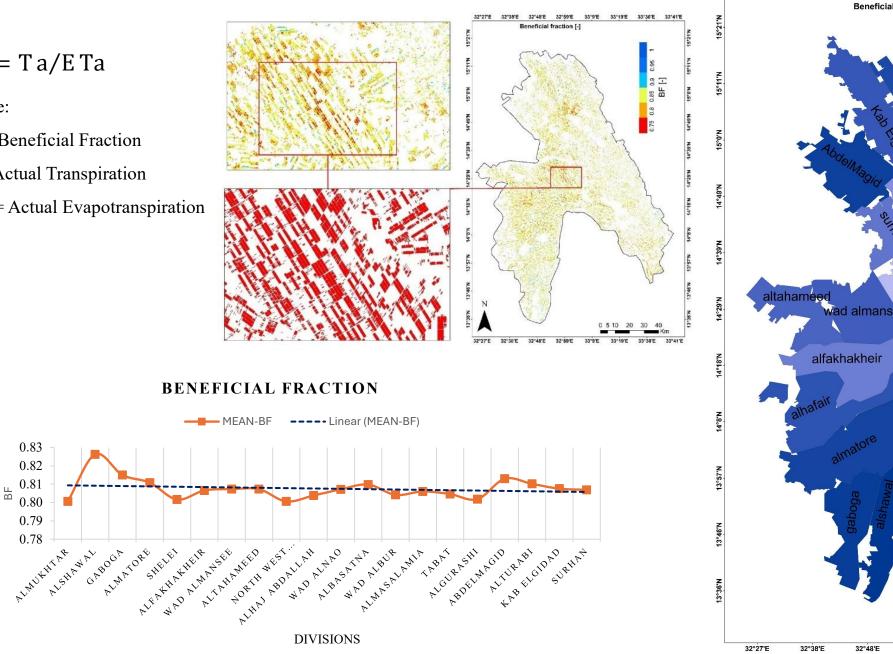
### **3-Water management indicators Reference Evapotranspiration (RET) :**

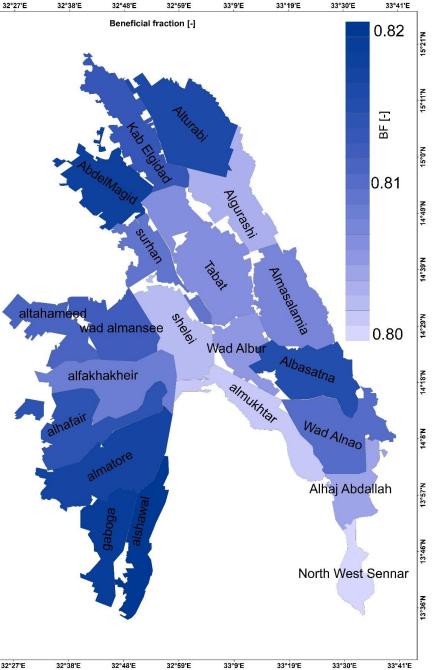
Divisions

## 4-Water management indicators - Beneficial Fraction

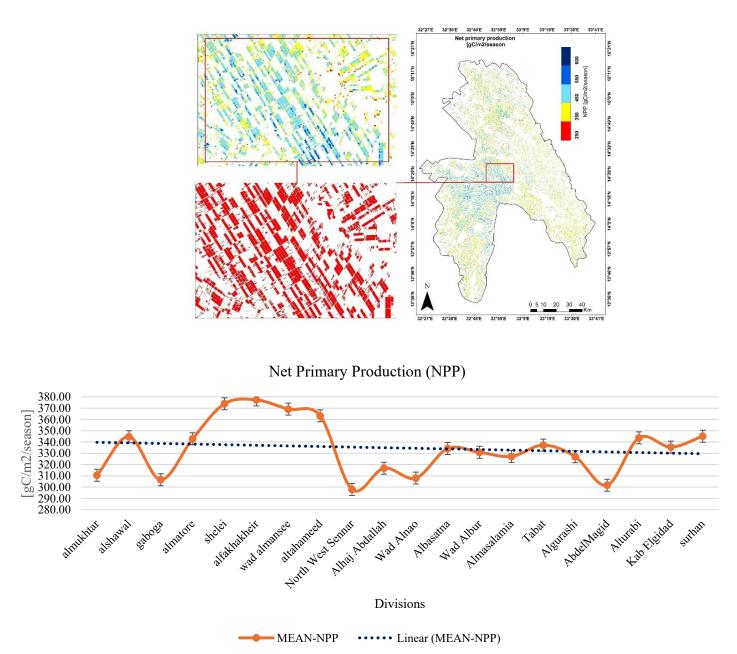
BF = Ta/ETa

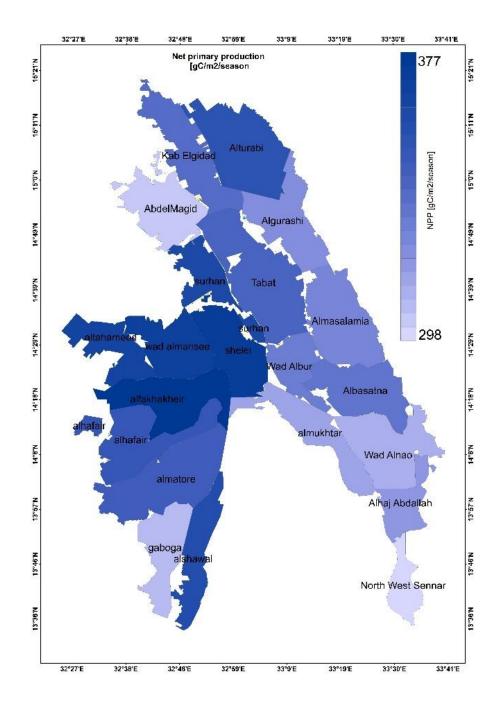
0.83 0.82


0.8ВF 0.80 0.79 0.78


Where:

BF = Beneficial Fraction


Ta = Actual Transpiration


ETa = Actual Evapotranspiration





**1-Productivity indicators - Net Primary Production (NPP) :** 





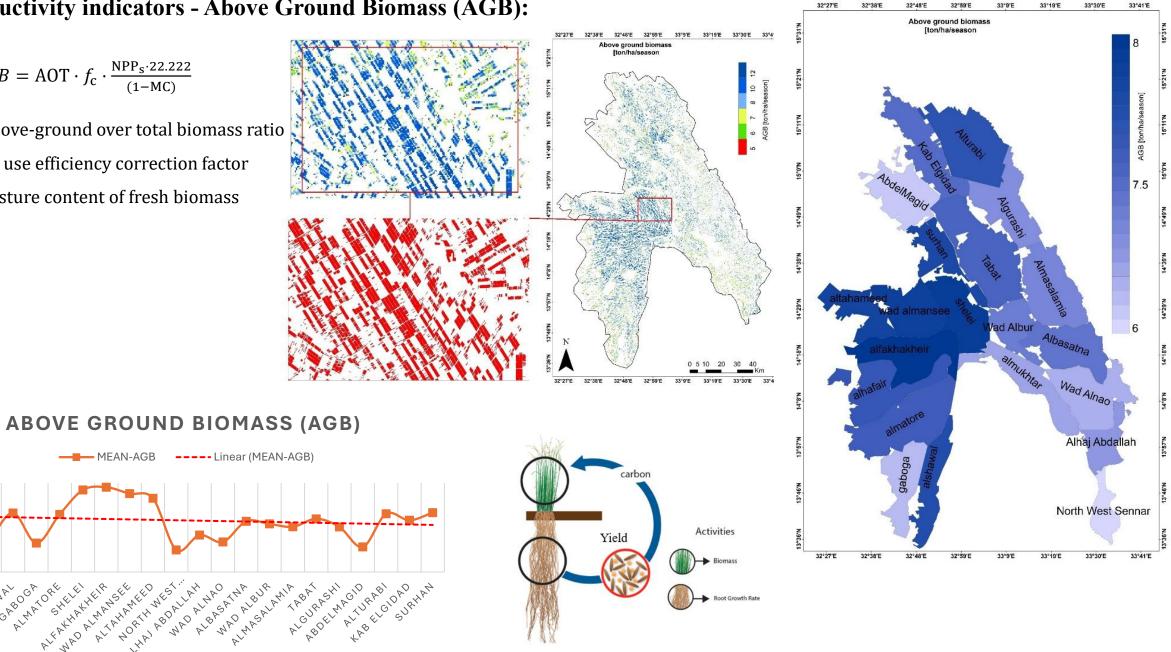
### 2-Productivity indicators - Above Ground Biomass (AGB):

Biomass  $B = AOT \cdot f_c \cdot \frac{NPP_s \cdot 22.222}{(1-MC)}$ 

AOT = Above-ground over total biomass ratio fc = Light use efficiency correction factor mc = Moisture content of fresh biomass

- MEAN-AGB

NORTHWEST ALHALABOALLAH


ALTAHAMEED

ALFANAD ALMANSEE

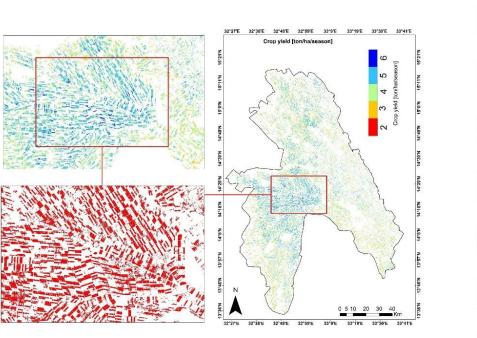
CABOCA OFF

[100/H4/SEASON] 8.00 7.50 7.00 6.50 6.00

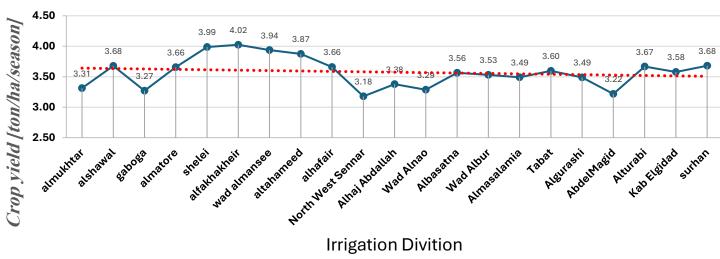
at MUKHTAR MA

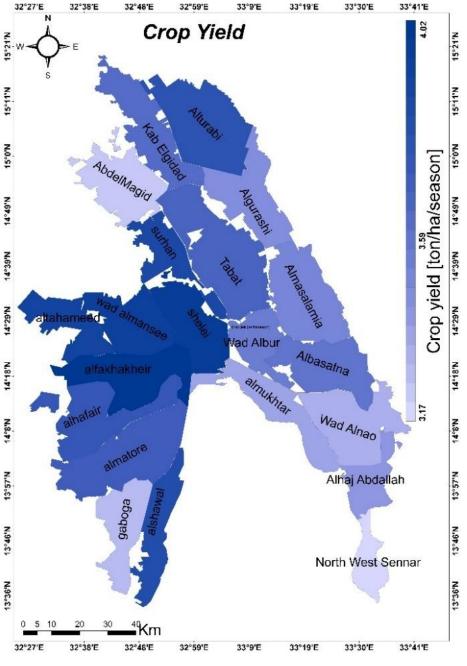


DIVISIONS


WADALWAD

## **3-Productivity indicators - Crop Yield:**


 $Yield = B \cdot HI$ 


HI = Harvest Index (Wheat = 0.84)





**Crop Yield** 





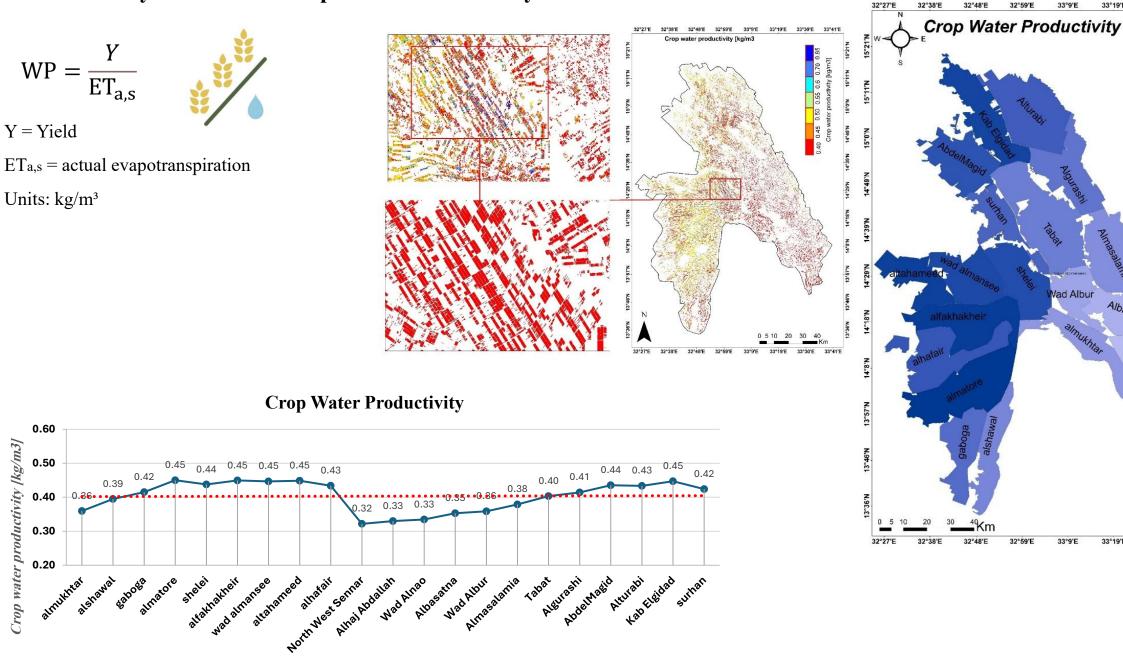
**4-Productivity indicators - Crop Water Productivity:** 

Y = Yield

0.60

0.50

0.40


0.30

0.20

almukhtar

0.36

Crop water productivity [kg/m3]



33°19'E

Albasatna

33°19'E

Wad Alnao

Alhaj Abdallah

North West Sennar

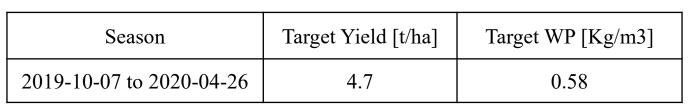
33°30'E

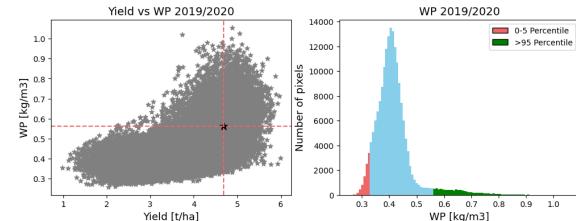
33°30'E

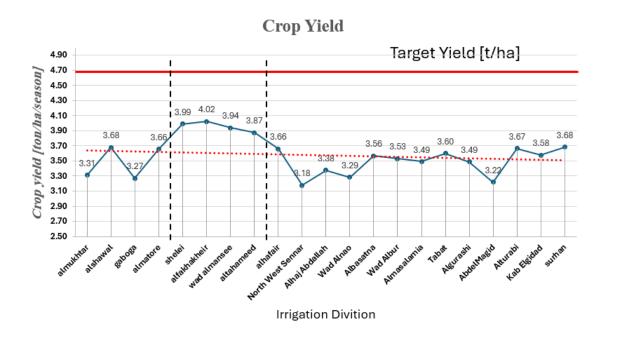
33°41'E

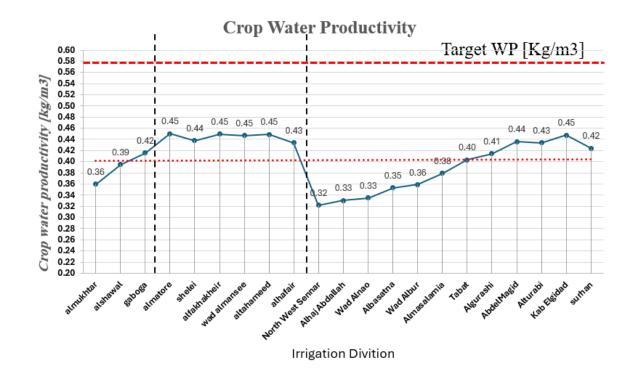
5°11'N

Crop water productivity [kg/m3]


0.42


0.30


33°41'E


4°8'N

Irrigation Divition



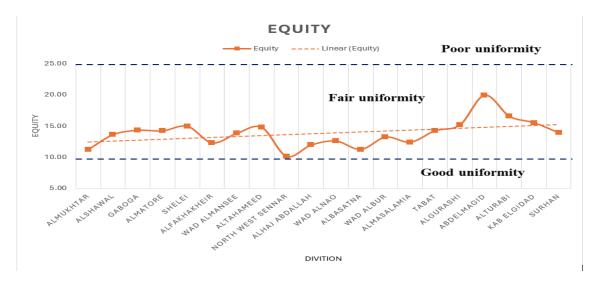


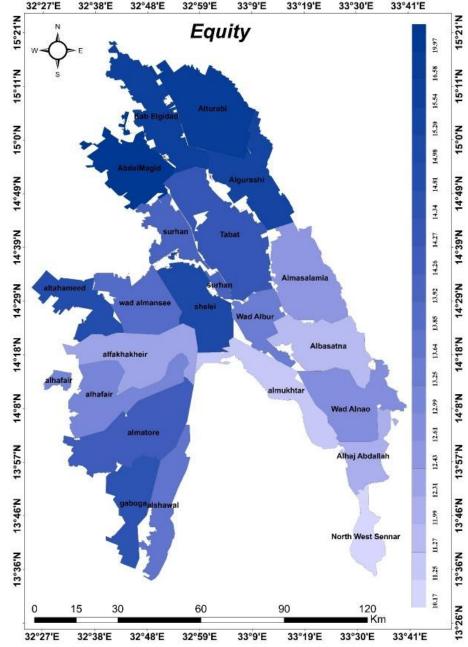




### **Crop Yield and WPy Analysis for Wheat in the Gezira Scheme**

## **1-Efficiency indicators-Equity:**


Equity: in irrigation systems refers to the degree to which water deliveries or crop water use are considered fair across all users or areas within the system. It is a crucial indicator of irrigation performance and system management effectiveness.


#### Equity = CV(ETa)

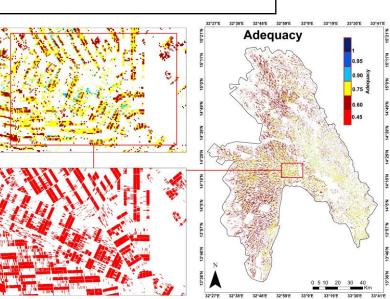
Calculate Coefficient of Variation (CV): CV = (Standard Deviation / Mean) \* 100

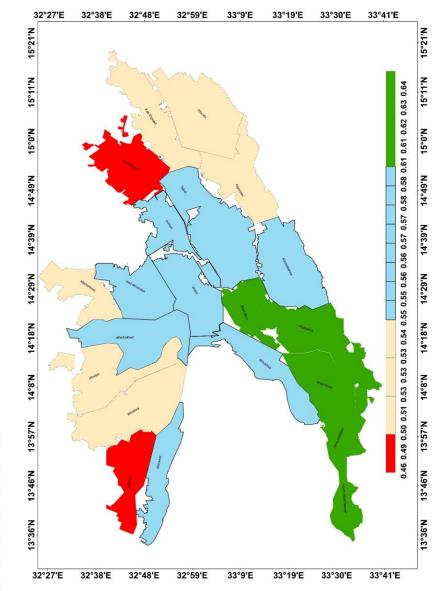
The CV value represents your Equity measure.

| Performance Indicator | Reference Range                             |
|-----------------------|---------------------------------------------|
| Equity                | 0 < E < 10% Good                            |
| Equity                | <ul> <li>10 &lt; E &lt; 25% Fair</li> </ul> |
|                       | E > 25% Poor performance                    |





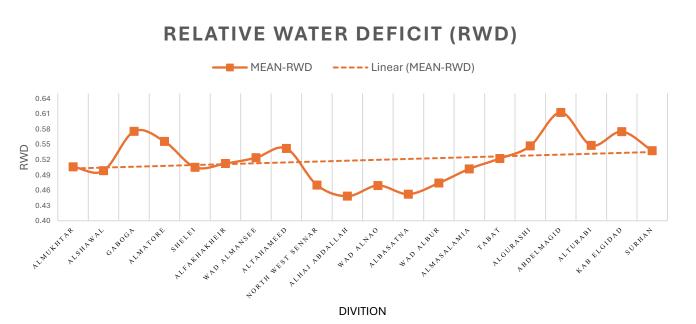


## 2-Efficiency indicators- Adequacy:

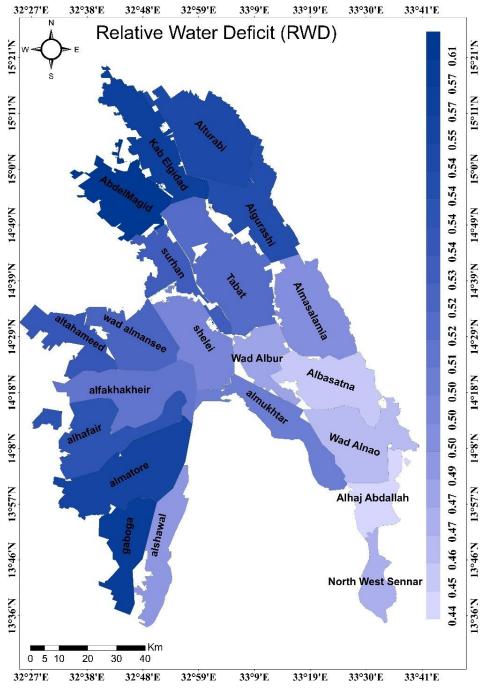

Adequacy: is a critical efficiency indicator in irrigation systems, quantifying the extent to which crop water requirements are met. It is defined as the ratio of actual evapotranspiration (ETa) to potential evapotranspiration (ETp) over a growing season.



| Performance Indicator | Reference Range                                                                                                                                                   |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Adequacy              | <ul> <li>0.8 &lt; A &lt;= 1 Good performance / operational range</li> <li>0.68 &lt; A &lt;= 0.8 Acceptable range</li> <li>A &lt;=0.68 Poor performance</li> </ul> |



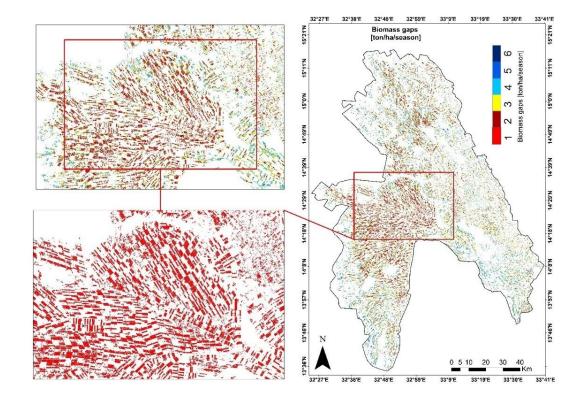


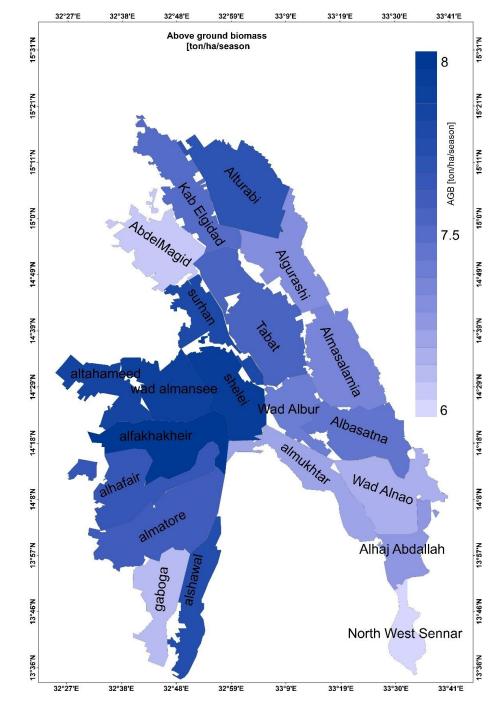




## **3-Efficiency indicators- Relative water deficit:**

Relative Water Deficit (RWD): is a crucial physiological indicator that quantifies the degree of water stress experienced by crops.

| Relative Water Deficit (RWD) = $1 - $    | (AETI / REF)                                                              |
|------------------------------------------|---------------------------------------------------------------------------|
| ττ 71                                    | Relative Water Deficit for<br>all Scheme Season2019/2020 = (27%)          |
| AETI: Actual Evapotranspiration          | crops in the scheme received only 73% of their optimal water requirements |
| <b>REF: Reference Evapotranspiration</b> | L                                                                         |

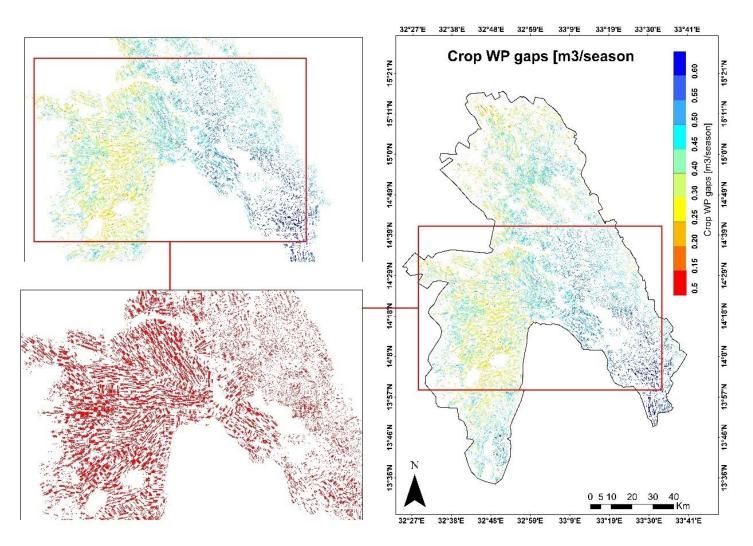



## **1-Gaps Analysis Biomass Gaps:**

Biomass Gap: The difference between the target biomass and the actual biomass in areas where the actual biomass is below the target.

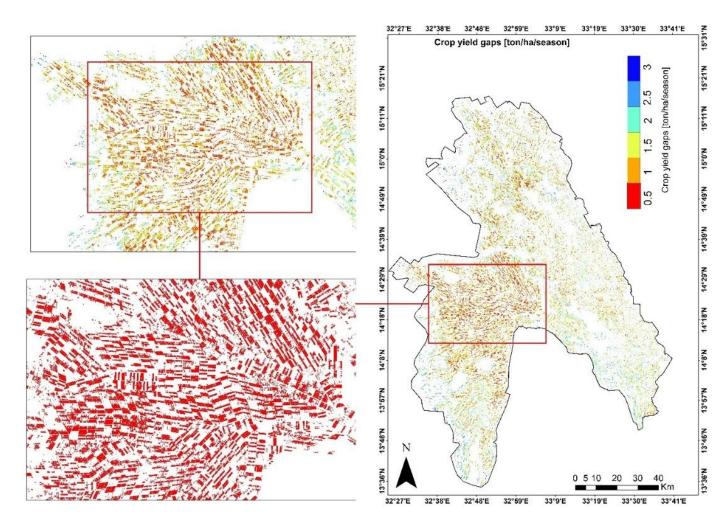
*Biomass gap* = Target Biomass – Actual Biomass






## **Biomass Water Productivity Gaps'' (Biomass WP Gaps):**

The difference between the target biomass water productivity and the actual biomass water productivity in areas where the actual WPb is below the target.


WPb Gap = Target WPb - Actual WPb



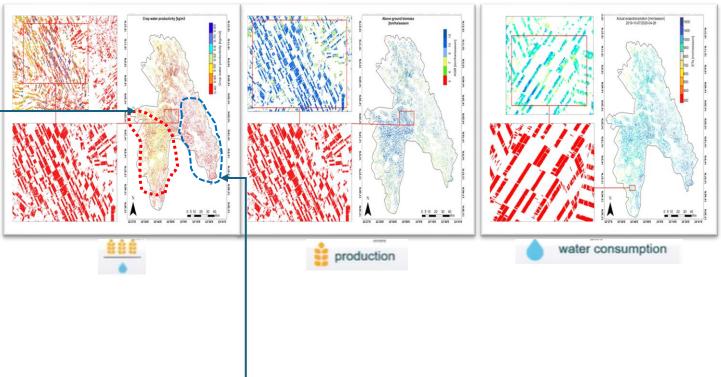
## **Crop Yield Gaps:**

Crop Yield Gap: The difference between the target crop yield and the actual crop yield in areas where the actual yield is below the target.

Yield Gap = Target Yield - Actual Yield



**Calculating Yield Water Productivity: Maximizing Efficiency in Agricultural Outputs :** 


#### Managil Zone: \_

#### **Yield Range:**

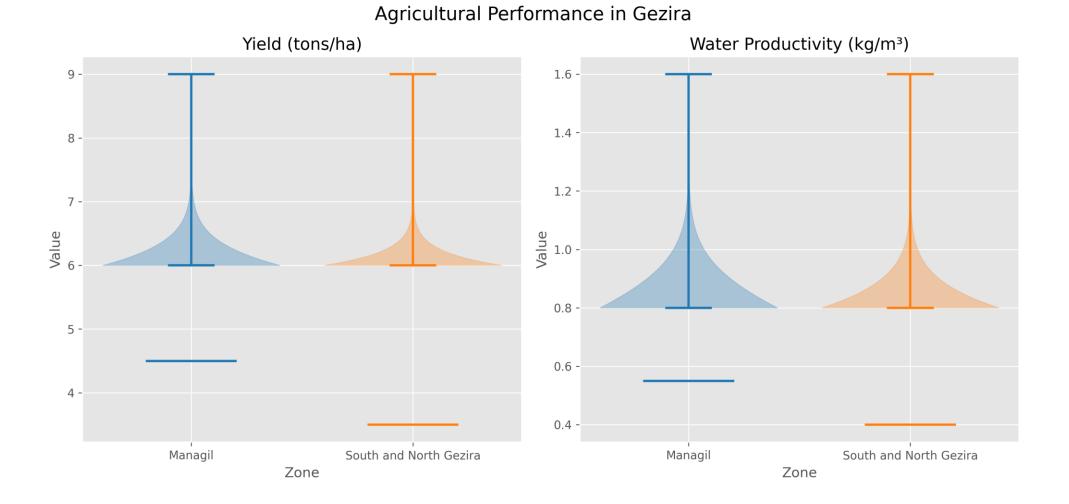
The wheat yield in the Managil zone varies between <u>4 to 5 tons per hectare (tons/ha)</u>. However, this is below the optimum yield range, which should ideally be between <u>6 to 9</u> <u>tons/ha</u>. This indicates that the current yields are lower than the potential yield that could be achieved under ideal conditions.

#### Water Productivity:

The water productivity in this zone is approximately <u>0.55 kilograms per cubic meter</u> (kg/m<sup>3</sup>). This value is less than 50% of the <u>optimum water productivity range, which is</u> <u>between 0.8 to 1.6 kg/m<sup>3</sup></u>. This suggests that the current usage of water in the Managil zone is not efficient, as the crops are producing less than half the yield they could potentially produce per unit of water used.

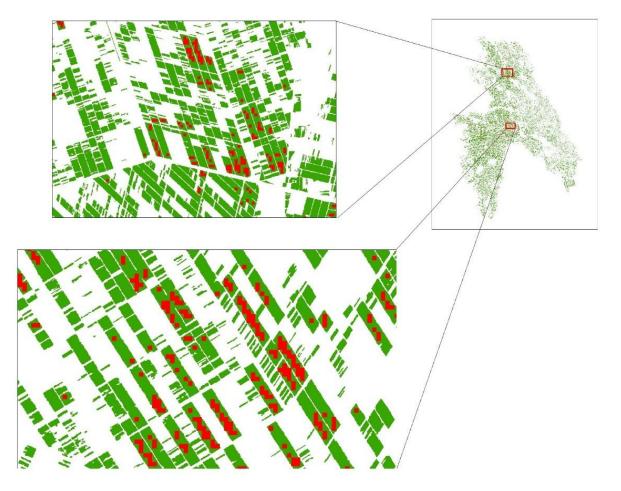


#### South and North Gezira Zone:


#### Yield:

In these zones, the majority of the wheat harvest is <u>less than 3.5 tons/ha</u>. This yield is significantly lower than in the Managil zone and far below the optimum yield range, indicating major issues in crop productivity.

#### Water Productivity:


The water productivity here is <u>below 0.4 kg/m</u><sup>3</sup>. This is even lower than the already suboptimal productivity in the Managil zone and well below the optimum range. It implies an even less efficient use of water in these zones, with the crops producing a very small amount of yield per unit of water used.

In summary, both zones are experiencing suboptimal wheat yields and poor water productivity. The yields are lower than the ideal targets, and the amount of wheat produced per unit of water is significantly less than the optimal values. This indicates a need for improved agricultural practices, better water management, and potentially the integration of advanced technologies to enhance both yield and water productivity in these areas.



## **Bright Spots Analysis:**

The Bright Spots analysis for the Gezira Scheme, based on remote sensing data from October 7, 2019, to April 26, 2020, revealed significant insights into high-performing areas of wheat cultivation.



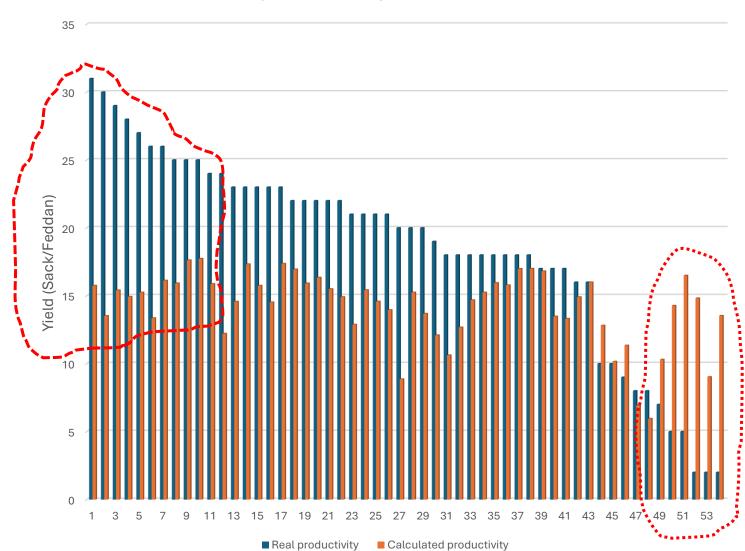
Bright Spot = (Actual Biomass  $\geq$  Target Biomass)AND (Actual WPb  $\geq$  Target WPb)

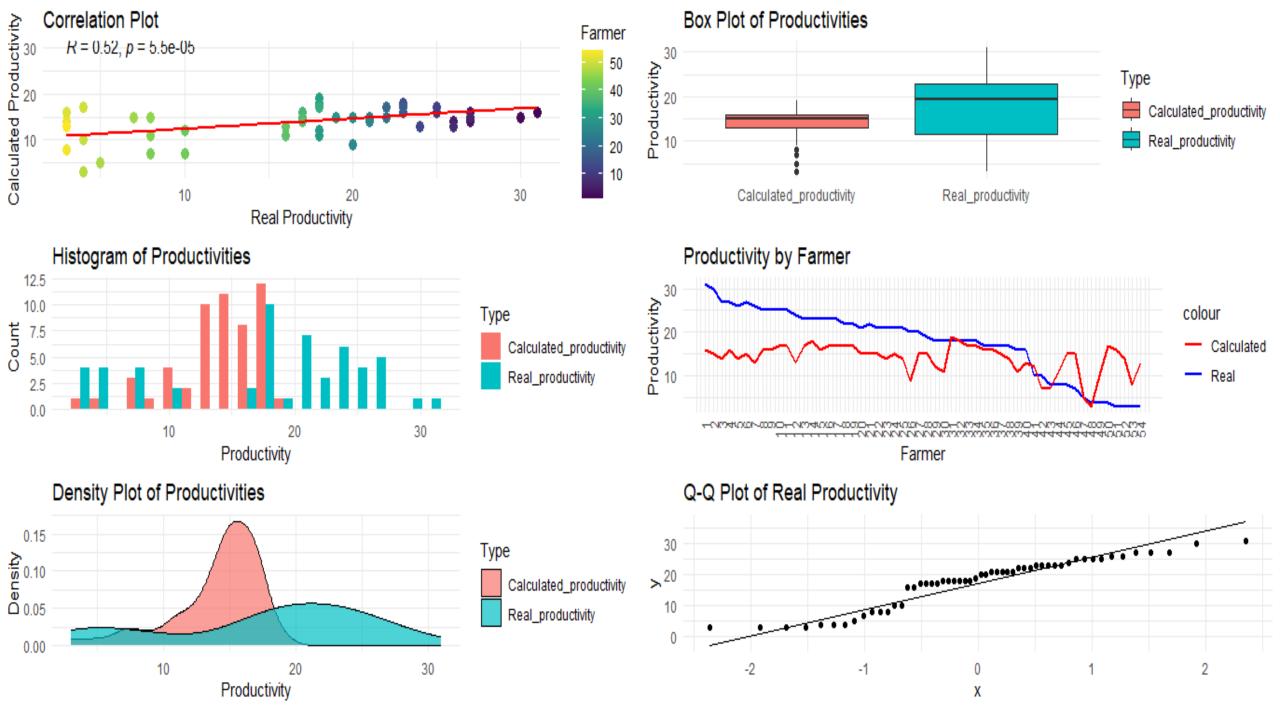
Bright Spot = (Actual Yield  $\geq$  Target Yield)AND (Actual WPy  $\geq$  Target WPy)

## Fieldwork






| O. Farmer Name                                           | irea Yield |      |     | Land Prepri                |                               |      |     |     |    |              |     |   |     | Additional |             | Type of Seed                                      | seed rate (Kg/feddan) | Average |                                                                      | rrigation during seasor | Are weed and silt problems a major issue |
|----------------------------------------------------------|------------|------|-----|----------------------------|-------------------------------|------|-----|-----|----|--------------|-----|---|-----|------------|-------------|---------------------------------------------------|-----------------------|---------|----------------------------------------------------------------------|-------------------------|------------------------------------------|
|                                                          | -          |      |     | Disk (3-Disk Plough Harrow | Kharbash Leveling (Disck_harn |      |     |     |    | iddan Avarag |     |   |     | n Finance  | Harvest per |                                                   |                       | -       |                                                                      |                         |                                          |
| الزين محمد احمد المکن                                    |            | 20 1 |     | 1 5                        |                               | 1 7  | 2.3 | 1.7 |    | 2.7          | 2.5 |   | 0 V |            |             | Imam                                              | 60                    | 71.6    | 2019-11-15 2019-11-20 2019-12-05                                     | 8                       | Yes                                      |
| ايوبكر صباح الخبر                                        | 3          | 18 1 |     | 1 2                        |                               | 2 6  | 2.0 | 1.7 |    | 2.3          | 2.5 |   | 0 🗸 |            | v           | Imam                                              | 60                    | 71.6    | 2019-11-15 2019-11-20 2019-12-05                                     | 8                       | Yes                                      |
| عبد الماجد القضل على الأمين                              |            | 20 1 |     | 5                          | 1                             | 2 6  | 2.0 |     | 9  | 3.0          | 2.5 |   | 0 V | V          | V           | Imam                                              | 60                    | 71.6    | 2019-11-10 2019-11-15 2019-12-01                                     | 6                       | Yes                                      |
| احمد عمر احمد عيمى                                       | 6          | 22 1 |     | 5                          |                               | 1 3  | 1.0 | 1.7 |    | 3.3          | 2.5 | 0 | 0 V |            | V           | Imam                                              | 60                    | 71.6    | 2019-11-18 2019-11-25 2019-12-10                                     | 6                       | Yes                                      |
| الزين العوض الزين                                        | 3          | 23 1 | 9 1 | 4                          |                               | 1 6  | 2.0 | 1.7 | 7  | 2.3          | 2.5 | 0 | 0   | v.         | V           | Imam                                              | 60                    | 71.6    | 2019-11-20 2019-11-25 2019-12-10                                     | 8                       | Yes                                      |
| على محمد احمد                                            | 3          | 18 1 |     | 1 2                        |                               | 2 7  | 2.3 | 1.7 |    | 3.3          | 2.5 | 0 | 0   |            | V           | Imam                                              | 60                    | 71.6    | 2019-11-15 2019-10-20 2019-12-07                                     | 8                       | Yes                                      |
| على محمد عبدالله                                         | 6          | 18 1 | 9 1 | 3                          |                               | 1 4  | 1.3 | 1.7 | 6  | 2.0          | 2.5 | 0 | 0 🗸 |            |             | Imam                                              | 60                    | 71.6    | 2019-11-12 2019-11-18 2019-12-06                                     | 6                       | Yes                                      |
| عىر عبدالله محمد تور                                     | 3          | 23 1 | 9   |                            |                               | 4    | 1.3 | 1.7 | 7  | 2.3          | 2.5 | 0 | 0 V |            |             | Imam                                              | 60                    | 71.6    | 2019-11-18 2019-11-21 2019-11-11                                     | 7                       | Yes                                      |
| عيدالله الطيب التوم                                      | 3          | 21 1 | 9   | 1 4                        |                               | 1 5  | 1.7 | 1.7 | 6  | 2.0          | 2.5 | 0 | 0 1 | v.         | v           | Imam                                              | 67                    | 71.6    | 2019-11-15 2019-11-17 2019-12-03                                     | 7                       | Yes                                      |
| عمر احمد محمد العطايا                                    | 3          | 20 1 | 9 1 | 1 3                        |                               | 2 4  | 1.3 | 1.7 | 10 | 3.3          | 2.5 | 0 | 0 V |            |             | Imam                                              | 67                    | 71.6    | 2019-11-18 2019-12-06 2019-12-28                                     | 6                       | Yes                                      |
| عبدالله يرسف عبدالله                                     | 3          | 21 1 | 9 1 | 4                          |                               | 1 4  | 1.3 | 1.7 | 2  | 2.3          | 2.5 | 0 | 0 1 |            |             | Imam                                              | 60                    | 71.6    | 2019-11-13 2019-11-14 2019-11-30                                     | 7                       | Yes                                      |
| الشوء الإمام الشود حسن                                   | 3          | 16 1 | 9   | 1 3                        |                               | 1 4  | 1.3 | 1.7 | 7  | 2.3          | 2.5 | 0 | 0 4 |            | 4           | Imam                                              | 60                    | 71.6    | 2019-11-06 2019-12-18 2019-11-28                                     | 8                       | Yes                                      |
| عادل محمد احمد الجزول                                    |            | 22 1 | 9 1 | 1 5                        |                               | 1 4  | 1.3 | 1.7 |    | 2.7          | 2.5 | 0 | 0 1 | v          |             | Imam                                              | 80                    | 71.6    | 2019-11-15 2019-11-17 2019-12-01                                     | 7                       | Yes                                      |
| موض الكريم محمد على                                      |            | 25 1 | 0   | 2 3                        |                               | 1 5  | 1.7 | 1.7 |    | 2.7          | 2.5 | 0 |     |            |             | Imam                                              | 80                    | 71.6    | 2019-11-15 2019-11-20 2019-12-06                                     | 9                       | Yes                                      |
| مودن الدريم معند على<br>محمد عبدالباق البشير نور المدينة | 1          | 21 1 |     | 2 4                        |                               | 1 4  | 1.3 | 1.7 |    | 3.3          | 2.5 | 0 | 0   |            | J           | Imam                                              | 83                    | 71.6    | 2019-11-04 2019-11-11 2019-12-01                                     | 9                       | Yes                                      |
|                                                          | 3          | 21 1 |     | 1 2                        |                               | 2 5  | 1.7 | 1.7 |    | 2.3          | 2.5 | 0 |     |            | *           | Imam                                              | 100                   | 71.6    | 2019-11-24 2019-11-24 2019-10-15                                     | 2                       | Yes                                      |
|                                                          | 3          |      |     | 1 3                        |                               |      |     |     |    |              |     |   | 0   |            | V           |                                                   |                       |         |                                                                      | /                       | Yes                                      |
|                                                          | 3          |      |     | 4                          |                               | 1 5  | 1.5 | 1.7 | 6  | 2.0          | 2.5 | 0 | 0   |            | V V         | Imam                                              | 90                    | 71.6    | 2019-11-15 2019-11-22 2019-12-07                                     | 8                       |                                          |
| الباقر العبيد منصور                                      | 3          | 30 1 |     |                            |                               | 2 6  | 2.0 | 1.7 | 9  | 3.0          | 2.5 | 0 | 0   |            | V           | lmam                                              | 80                    | 71.6    | 2019-11-16 2019-11-25 2019-12-10                                     | 8                       | Yes                                      |
| بثة متصور العبيد                                         | 3          | 26 1 |     | 4                          |                               | 2 5  | 1.7 | 1.7 | 7  | 2.3          | 2.5 | 0 | 0   |            | V           | Imam                                              | 65                    | 71.6    | 2019-11-14 2019-11-20 2019-12-04                                     | 6                       | Yes                                      |
| موسى عيدالله ادم                                         | 3          | 21 1 |     | 4                          |                               | 2 5  | 1.7 | 1.7 | 6  | 2.0          | 2.5 | 0 | 0   |            | V           | Imam                                              | 60                    | 71.6    | 2019-11-09 2019-11-07 2019-11-20                                     | 7                       | Yes                                      |
| فحل المولى عبدالله ادم                                   | 3          | 16 1 |     | 1                          |                               | 1 3  | 1.0 | 1.7 |    | 2.0          | 2.5 | 0 | 0   |            | V           | Imam                                              | 106                   | 71.6    | 2019-11-15 2019-11-15 2019-11-30                                     | 8                       | Yes                                      |
| ازهري عبدالله العبيد                                     | 3          | 17 1 |     | 3                          | 1                             | 4    | 1.3 | 1.7 |    | 2.0          | 2.5 | 0 | 0   | V          | V           | Imam                                              | 70                    | 71.6    | 2019-11-20 2019-11-27 2019-12-10                                     | 8                       | Yes                                      |
| Aleman Mohamed Mustafa Mohamed                           | 3          | 23 1 | 9 1 | 1                          | 1                             | 1 4  | 1.3 | 1.7 | 8  | 2.7          | 2.5 | 0 | 0   | 4          |             | Imam                                              | 80                    | 71.6    | 2020-11-01 2020-11-05 2020-10-20                                     | 8                       | Yes                                      |
| Mustafa Ali Mustafa Mohamed                              | 4          | 31 1 | 9   | 8                          |                               | 3 10 | 3.3 | 1.7 | 12 | 4.0          | 2.5 | 0 | 0 V |            | V           | Imam                                              | 125                   | 71.6    | 2020-11-05 2020-11-07 2020-11-20                                     | 12                      | Yes                                      |
| AlTayieb Eleman Mohamed Almustafa                        | 6          | 22 1 | 9   | 1                          |                               | 2 4  | 1.3 | 1.7 | 8  | 2.7          | 2.5 | 0 | 1   |            | v           | Imam                                              | 80                    | 71.6    | 2020-11-01 2020-11-05 2020-11-20                                     | 8                       | Yes                                      |
| Ali Edress Mohamed                                       | 3          | 18 1 | 9   | 2                          |                               | 1 6  | 2.0 | 1.7 | 12 | 4.0          | 2.5 | 0 | v   |            |             | Imam                                              | 80                    | 71.6    | 2020-11-05 2020-11-11 2020-11-30                                     | 8                       | Yes                                      |
| Ibrahim Abo Alkiram Ali                                  | 6          | 17 1 | 9   | 1                          |                               | 1 6  | 2.0 | 1.7 | 8  | 2.7          | 2.5 | 0 | *   | *          |             | Imam                                              | 60                    | 71.6    | 2020-11-20 2020-11-21 2020-12-05                                     | 8                       | Yes                                      |
| Abo Degana Alshikh Alaebaid                              | 9          | 23 1 | 9   | 1 6                        |                               | 2 6  | 2.0 | 1.7 | 7  | 2.3          | 2.5 | 0 | 0   |            |             | Imam                                              | 60                    | 71.6    | 2020-11-13 2020-11-27 2020-12-12                                     | 8                       | Yes                                      |
| Abdalla Gareeballah Mohamed                              |            | 26 1 |     | 4                          |                               | 1 6  | 2.0 | 1.7 |    | 2.3          | 2.5 | 0 | 0   |            |             | Imam                                              | 66                    | 71.6    | 2020-11-15 2020-11-29 2020-12-15                                     |                         | Yes                                      |
| Mohamed Khaier Ali Alnyar Alemam                         |            | 24 1 |     | 1 8                        |                               | 1 4  | 1.3 |     | 8  | 2.7          | 2.5 | ő | 1   |            |             | Iman                                              | 73                    | 71.6    | 2020-11-10 2020-11-10 2020-11-25                                     |                         | No                                       |
| Alfadil Ali Mustafa                                      | 40         | 24 1 |     |                            |                               | 1 6  | 2.0 | 1.7 |    | 3.0          | 2.5 |   | 1 1 |            |             | Inan                                              | 60                    | 71.6    | 2020-11-10 2020-11-12 2020-12-04                                     | 6                       | Yes                                      |
|                                                          | 15         | 24 1 |     | 1 4                        |                               | 2 6  | 2.0 | 1.7 |    | 3.3          | 2.5 |   | 1.4 |            |             | Imam                                              | 60                    | 71.6    | 2020-11-05 2020-11-05 2020-11-05                                     | 0                       | Yes                                      |
|                                                          |            |      |     | 1 4                        |                               |      |     |     |    |              |     | 0 | -   | v          |             |                                                   |                       |         |                                                                      | 8                       | Yes                                      |
| Ahmed Abdalazim                                          | 30         |      |     | 1                          |                               | 1 6  | 2.0 | 1.7 |    | 2.0          | 2.5 |   | 0   |            |             | Imam                                              | 63                    | 71.6    | 2020-11-10 2020-11-15 2020-11-25                                     |                         |                                          |
| Rafea Alrayah Abdalla                                    | 12         |      |     | 4                          |                               | 1 6  | 2.0 | 1.7 |    | 2.0          | 2.5 | 0 | 1 🗸 |            | V           | Imam                                              | 60                    | 71.6    | 2020-11-24 2020-12-01 2020-12-15                                     | 6                       | Yes                                      |
| Modather Yousil Mohamed Abdalla                          | 3          | 22 1 |     | 1 3                        |                               | 8    | 2.7 | 1.7 |    | 2.0          | 2.5 | 0 | 1 🗸 |            |             | Imam                                              | 100                   | 71.6    | 2020-11-15 2020-11-16 2020-11-26                                     | 8                       | Yes                                      |
| Mohamed Noor Ahmed Gdal                                  | 90         | 20 1 |     | 2                          |                               | 1 4  | 1.3 | 1.7 | 8  | 2.7          | 2.5 | 0 | 0 V |            | V           | Imam                                              | 60                    | 71.6    | 2020-11-20 2020-11-20 2020-12-01                                     | 7                       | Yes                                      |
| Ammar Alamin Ahmed                                       | 3          | 27 1 |     | 6                          |                               | 2 3  | 1.0 | 1.7 | 6  | 2.0          | 2.5 | 0 | 0 V | v.         |             | Imam                                              | 60                    | 71.6    | 2020-12-06 2020-12-07 2020-12-23                                     | 7                       | Yes                                      |
|                                                          | 15         | 25 1 |     | 1 4                        |                               | 2 6  | 2.0 | 1.7 |    | 2.0          | 2.5 | 0 | 0 V |            |             | Imam                                              | 60                    | 71.6    | 2020-11-13 2020-11-17 2020-12-05                                     | 7                       | Yes                                      |
| Abdeen Ahmed Mohamed                                     | 42         | 22 1 | 9   | 1 4                        |                               | 1 4  | 1.3 | 1.7 |    | 2.3          | 2.5 | 0 | 1   | 4          |             | Imam                                              | 60                    | 71.6    | 2020-11-05 2020-11-07 2020-11-22                                     | 7                       | Yes                                      |
| Hago Alhady Mohamed                                      | 6          | 17 1 | 9   | 1 2                        |                               | 1 3  | 1.0 | 1.7 | 6  | 2.0          | 2.5 | 0 | 0   |            | V           | Byself                                            | 60                    | 71.6    | 2020-12-01 2020-12-05 2020-12-20                                     | 8                       | Yes                                      |
| Fkhar Aldeen Mohamed Yousif Omer                         | 9          | 25 1 | 9 1 | 2 4                        |                               | 1 5  | 1.7 | 1.7 | 9  | 3.0          | 2.5 | 0 | 0   |            |             | Al ragieh                                         | 67                    | 71.6    | 2020-11-15 2020-11-15 2020-12-07                                     | 10                      | Yes                                      |
| Abdalla Alnagy Yagoub Abdalla                            | 9          | 29 1 | 9   | 1 3                        |                               | 1 4  | 1.3 | 1.7 | 7  | 2.3          | 2.5 | 0 | 0   |            | V           | Imam                                              | 80                    | 71.6    | 2020-11-25 2020-11-26 2020-12-15                                     | 8                       | Yes                                      |
| Azhary Mohamed Alamin                                    | 9          | 18 1 | 0   | 1 1                        |                               | 2 4  | 1.3 | 1.7 | 6  | 2.0          | 2.5 | 0 | 0 1 |            | 3           | Imam                                              | 80                    | 71.6    | 2020-12-07 2020-12-07 2020-12-22                                     | 2                       | Yes                                      |
| Abdalmahmood Ahmed Mosa                                  | 30         | 26 1 |     | 2 6                        |                               | 1 5  | 1.7 | 1.7 | 7  | 2.3          | 2.5 | 0 | 0   |            |             | Iman                                              | 60                    | 71.6    | 2020-11-15 2020-11-15 2020-12-05                                     | 8                       | Yes                                      |
| Sir Alkhatim Ahmed Alhai                                 | 9          | 18 1 |     | 1 4                        |                               | 1 4  | 1.3 |     | 6  | 2.0          | 2.5 | 0 | 0   |            | J           | Imam                                              | 60                    | 71.6    | 2020-11-15 2020-11-15 2020-11-30                                     |                         | Yes                                      |
| Abdallatief mansor Alebaied                              | 60         | 30 1 |     |                            |                               | 1 6  | 2.0 | 1.7 |    | 2.0          | 2.5 |   | 0 1 |            |             | Al motale Erada compan                            |                       | 71.6    | 2020-11-10 2020-11-11 2020-11-26                                     |                         | No                                       |
| Omer Hassan Abdahameed                                   | 6          | 22 1 |     | 4                          |                               | 1 4  | 1.3 | 1.7 |    | 2.3          | 2.5 |   | 0 1 |            |             | Almotaly Erada company                            | 70                    | 71.6    | 2020-11-12 2020-11-20 2020-12-03                                     | -                       | Yes                                      |
| Ali Mansor Alebaied                                      | 12         | 27 1 |     | 4                          | 4                             | 1 4  | 2.0 | 1.7 | 6  | 2.3          | 2.5 |   | 0 1 |            | ¥           | Almotaly trada company<br>Al motale trada company |                       | 71.6    | 2020-11-12 2020-11-20 2020-12-03<br>2020-11-10 2020-11-25 2020-12-10 |                         | Yes                                      |
|                                                          |            |      |     |                            |                               |      |     |     |    |              |     | 0 |     |            |             |                                                   |                       |         |                                                                      | /                       |                                          |
| Noor Aldaiem Mosa Ahmed Alrady                           | 6          | 19 1 |     | 4                          |                               | 1 5  | 1.7 |     | 8  | 2.7          | 2.5 | 0 | 1 1 |            |             | Imam                                              | 80                    | 71.6    | 2020-11-05 2020-11-10 2020-11-25                                     | 1                       | Yes                                      |
|                                                          | 21         | 16 1 |     | 1 2                        |                               | 1 4  | 1.3 | 1.7 |    | 2.7          | 2.5 | 0 | 1   | N.         |             | Imam                                              | 90                    | 71.6    | 2020-11-01 2020-11-07 2020-11-19                                     | 8                       | Yes                                      |
| Imam Fadi Almola Imam                                    | 9          | 21 1 | 9   | 4                          | 3                             | 1 4  | 1.3 | 1.7 |    | 2.0          | 2.5 | 1 | 1   |            |             | Zakia                                             | 80                    | 71.6    | 2020-11-13 2020-11-13 2020-11-26                                     | 7                       | Yes                                      |
| بلال العبيد محمد                                         |            | 7    |     | 1 3                        |                               | 1 3  | 1   |     | 6  | 2            |     |   | 0 V |            |             | lmam                                              | 60                    |         | 2019-11-20 2019-10-25 2019-12-10                                     | 4                       | Yes                                      |
| نور الدين جيارة                                          | 3          | 10   |     | 1 1                        |                               | 1 3  | 1   |     | 6  | 2            |     | 0 | 0 V |            |             | Imam                                              | 60                    |         | 2019-11-20 2019-11-25 2019-12-10                                     | 4                       | Yes                                      |
| سعيد عبد السخى بخبت                                      | 6          | 8    |     | 1 1                        |                               | 1 3  | 1   |     | 6  | 2            |     | 0 | 0 V |            |             | Imam                                              | 60                    |         | 2019-11-15 2019-11-25 2019-10-10                                     | 6                       | Yes                                      |
| معاذ صباح الخم محمد المكى                                |            |      |     | 1 3                        |                               | 1 3  | 1   |     | 6  | 2            |     |   | 0 1 |            |             | Imam                                              | 60                    |         | 2019-11-15 2019-11-20 2019-12-05                                     |                         | Ves                                      |


## **Comparing between Real Productivity Yield and**

## **Calculate Productivity from WaPOR:**

Comparison of real yield with calculated

According to the figure bellow it is noticed that the accuracy of the WaPOR increases when the Productivity value is moderate between (15-25) sack/feddan ,and Data accuracy is also reduced in the case of very high and very low Productivity the WaPOR results over estimate the lower yield and underestimates the higher yield.

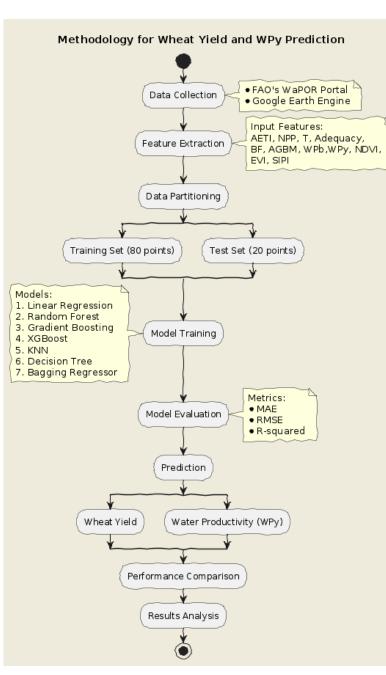


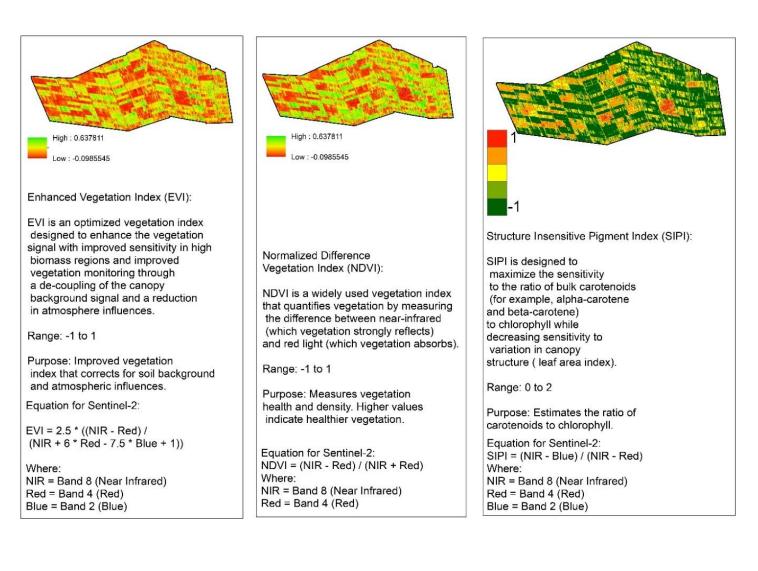




#### • Results:

The questionnaire has been conducted with 185 farmers based in the yield of wheat, 16 Sack/Feddan or more has been considered as high yield 15 Sack/Feddan or less has been considered as low yield the following table summaries the average practices of the farmers according to the high and low yield


| No. | Activity                                | Suitable Practice                                                                        |
|-----|-----------------------------------------|------------------------------------------------------------------------------------------|
| 1   | Seed rate                               | 60 - 70 kg / Feddan                                                                      |
| 2   | Seed preparation                        | It should be done according to the agricultural inspector or use the ready prepared type |
| 4   | Land preparation                        | Plough 3-4 times according to the rain , leveling 1-2 times                              |
| 5   | Sowing Date                             | 10 <sup>th</sup> – 20 <sup>th</sup> of November                                          |
| 6   | First irrigation                        | 10 <sup>th</sup> – 25 <sup>th</sup> of November                                          |
| 7   | Second irrigation                       | Should not be after the end of December                                                  |
| 8   | Irrigation intervals                    | 12 - 15 days                                                                             |
| 9   | Irrigation time                         | 12 hours                                                                                 |
| 10  | Chemical Fertilizers                    | Dap 60 - 80 kg/feddan – urea 100 - 150kg / feddan                                        |
| 11  | Weeds control                           | Used when its need it                                                                    |
| 12  | Pests control                           | Used when its need it (Jet spray is enough)                                              |
| 13  | Number of Irrigations during the season | 7 – 8 times                                                                              |
| 14  | Organic Fertilizers                     | Not significant                                                                          |


## Predicting Wheat Yield and Water Productivity in The Gezira Scheme Using Machine Learning Approach



| RET    | AETI  | NPP    | Т     | Adequacy | BF   | AGBM | WPb  | Wpy  | NDVI | EVI  | SIPI | Calculated Yield ton/ha | Real Yield ton/ha |
|--------|-------|--------|-------|----------|------|------|------|------|------|------|------|-------------------------|-------------------|
| 1855.6 | 791.2 | 277.37 | 615   | 0.5      | 0.78 | 6.16 | 0.78 | 0.37 | 0.35 | 3.86 | 1.45 | 3                       | 1.15              |
| 1855.6 | 798.5 | 282.44 | 616.2 | 0.5      | 0.77 | 6.28 | 0.79 | 0.38 | 0.44 | 3.92 | 1.37 | 3                       | 1.28              |
| 1849.3 | 815.2 | 317.2  | 643.1 | 0.51     | 0.79 | 7.05 | 0.86 | 0.42 | 0.52 | 3.72 | 1.19 | 3                       | 1.75              |

## Methodology:





# Performance metrics of machine learning models for wheat yield and WPy estimation in the Gezira Irrigation Scheme

| Target | Model             | MAE   | RMSE  | R-squared |
|--------|-------------------|-------|-------|-----------|
| Yield  | Linear Regression | 0.245 | 0.322 | 0.708     |
| Yield  | Random Forest     | 0.167 | 0.228 | 0.854     |
| Yield  | Gradient Boosting | 0.177 | 0.244 | 0.832     |
| Yield  | XGBoost           | 0.170 | 0.245 | 0.831     |
| Yield  | KNN               | 0.236 | 0.290 | 0.763     |
| Yield  | Decision Tree     | 0.170 | 0.223 | 0.860     |
| Yield  | Bagging Regressor | 0.163 | 0.226 | 0.857     |
| Wpy    | Linear Regression | 0.003 | 0.003 | 0.999     |
| Wpy    | Random Forest     | 0.006 | 0.007 | 0.996     |
| Wpy    | Gradient Boosting | 0.004 | 0.008 | 0.995     |
| Wpy    | XGBoost           | 0.004 | 0.007 | 0.996     |
| Wpy    | KNN               | 0.018 | 0.026 | 0.945     |
| Wpy    | Decision Tree     | 0.010 | 0.013 | 0.986     |
| Wpy    | Bagging Regressor | 0.005 | 0.007 | 0.996     |

| - 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Oott (          |                  |                |                         |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                 |              |           | ,P Searc        | ¥.               |                   |              |                       |                |                             |                              |                      | ø           |           | ×       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|----------------|-------------------------|---------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------|-----------|-----------------|------------------|-------------------|--------------|-----------------------|----------------|-----------------------------|------------------------------|----------------------|-------------|-----------|---------|
| File                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Home                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Insert          | Page Lay         | out For        | mulas Da                | ita Revie     | w View          | Automa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | te Help                                                                                                          | Foxit PD                                                                                                        | F            |           |                 |                  |                   |              |                       |                |                             |                              |                      | 무이          | omments 👩 | Share ~ |
| Pas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t<br>py ~       | в                |                | • <b>∏</b> •<br>⊞• ≙•   |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                 |              |           | % • [           | -0.00            | Conditional       | Format as    | Normal<br>Good        | Bad<br>Neutral | Wheat Yield and Water Pi    |                              |                      |             |           |         |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mat Painte      |                  |                |                         | · •           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | E magea                                                                                                         |              |           |                 | Fi Fi            | ormatting *       | Table ~ [    |                       | recourt        | Input & Predict Performance | ce Visualization Correlation | Heatmap Feature Impo | tance About |           |         |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Clipboa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | Some feat        |                | ont<br>vellost if you s | ave this wor  | khook in the    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Alignment                                                                                                        | ou) format. To                                                                                                  | preserve the |           | Number          | an Excel file fr | armat Do          | n't chow ag  | Styles<br>ain Save As |                |                             |                              |                      |             |           | ×       |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                |                         | AVE LINS IVOI | KDOOK IIT II II | e comma-u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | carrated (.cs                                                                                                    | sy ronnat. To                                                                                                   | Preserve dis | sereature | 2, 30VE IL II I |                  | Diritat.          | in canole ag | Jave Post             |                | Wheat Yie                   | Id Prediction                |                      |             |           |         |
| 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | <u>/ fx ~  </u>  |                |                         |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                 |              |           |                 |                  |                   |              |                       |                | DET.                        | 1007.0                       |                      |             |           |         |
| 1 RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a de la companya de la compa | B<br>TI N       | C T              |                | E<br>dequacy BF         |               | G<br>GBM W      | and a state of the | and the second | and the second secon | K            |           | M<br>SIPI Ca    | lculated Yie     | N<br>Id ton/fedd: | an Real V    | 0<br>ield ton/ha      | P<br>Wpy       |                             | 1855.6                       | -                    |             |           | ^ î     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1855.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 837.3           | 321.23           | 651.5          | 0.53                    | 0.78          | 7.14            | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.49                                                                                                             | 3.66                                                                                                            | 1            |           | 1.49            | iculated ne      | to ton nedda      | 3            | 1.41                  |                | AETI:                       | 837.3                        | -                    |             |           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1855.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 896             | 333.02           | 709.3          | 0.56                    | 0.79          | 7.4             | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.58                                                                                                             | 3.76                                                                                                            | 1            |           | 1.32            |                  |                   | 4            | 2.24                  |                | NPP                         | 321.23                       | _                    |             |           |         |
| the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1855.6<br>1855.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 973.1<br>1007.4 | 345.26<br>350.47 | 774<br>806.1   | 0.61                    | 0.8           | 7.67            | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.54                                                                                                             | 3.85                                                                                                            | 1            |           | 1.2             |                  |                   | 4            | 2.41                  |                | T                           | 651.5                        |                      |             |           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1855.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1008.8          | 352.48           | 830.9          | 0.64                    | 0.82          | 7.83            | 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.46                                                                                                             | 3.47                                                                                                            | 1            |           | 1.21            |                  |                   | 4            | 2.59                  |                | Adequacy                    | 0.53                         |                      |             |           |         |
| THE OWNER WATER OF THE OWNER OF THE OWNER WATER OF THE OWNER OWN | 1855.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1056.2          | 383.15           | 847.1          | 0.66                    | 0.8           | 8.51            | 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.5                                                                                                              | 3.6                                                                                                             | 1            |           | 1.23            |                  |                   | 4            | 2.55                  |                | BF                          | 0.78                         |                      |             |           |         |
| The second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1855.6<br>1855.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1078.4<br>821.7 | 393.52<br>394.64 | 876.5<br>627.6 | 0.68                    | 0.81          | 8.74            | 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.49                                                                                                             | 3.66<br>3.64                                                                                                    | 1            |           | 1.46            |                  |                   | 4            | 2.64                  |                |                             | -                            |                      |             |           | 1.00    |
| and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1855.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1017.1          | 400.64           | 819.2          | 0.64                    | 0.81          | 8.9             | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.31                                                                                                             | 3.42                                                                                                            | 1            |           | 1.10            |                  |                   | 4            | 2.73                  |                |                             | 7.14                         |                      |             |           |         |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1855.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 807.7           | 417.47           | 619.8          | 0.51                    | 0.77          | 9.28            | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.57                                                                                                             | 3.94                                                                                                            | 1            |           | 1.19            |                  |                   | 4            | 2.86                  |                | WPb                         | 0.85                         |                      |             |           |         |
| The second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1855.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1159.3          | 425.45           | 962.4          | 0.73                    | 0.83          | 9.45            | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.5                                                                                                              | 3.77                                                                                                            | 1            |           | 1.23            |                  |                   | 5            | 3.28                  |                | NDVI                        | 0.49                         |                      |             |           | 1.5     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1855.6<br>1855.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 919<br>878.6    | 432.35<br>449.52 | 720.3<br>686.5 | 0.58                    | 0.78          | 9.61<br>9.99    | 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.62                                                                                                             | 3.65                                                                                                            | 1            |           | 1.12            |                  |                   | 5            | 3.34                  |                | EVI                         | 3.66                         |                      |             |           |         |
| NUTOKEN CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1855.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 880.7           | 466.48           | 688.6          | 0.55                    | 0.78          | 10.37           | 1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.61                                                                                                             | 3.57                                                                                                            | 1            |           | 1.09            |                  |                   | 5            | 3.78                  |                | SIPI                        | 1.49                         |                      |             |           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1855.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1091.8          | 472.13           | 904.2          | 0.69                    | 0.83          | 10.49           | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.61                                                                                                             | 3.88                                                                                                            | 1            |           | 1.11            |                  |                   | 5            | 3.2                   |                | Calculated Yield ton/ha     |                              | -                    |             |           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1855.6<br>1855.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 725.1 687.9     | 473.06           | 531<br>490.4   | 0.46                    | 0.73          | 10.51           | 1.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6                                                                                                              | 3.54<br>3.87                                                                                                    | 1            |           | 1.11            |                  |                   | 5            | 3.4                   |                |                             | -                            | -                    |             |           | 1.00    |
| CONVER-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1855.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 862.6           | 474.17           | 692.8          | 0.54                    | 0.8           | 10.54           | 1.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.65                                                                                                             | 3.6                                                                                                             | 1            |           | 1.21            |                  |                   | 5            | 3.22                  |                | Model                       | Linear Regression            | <u>·</u>             |             |           |         |
| THE R. L. W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1855.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1056.7          | 478.77           | 876.2          | 0.67                    | 0.83          | 10.64           | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.58                                                                                                             | 3.61                                                                                                            | 1            |           | 1.12            |                  |                   | 5            | 3.17                  |                |                             |                              |                      |             |           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1855.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 784.4           | 480.06           | 577            | 0.49                    | 0.74          | 10.67           | 1.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.66                                                                                                             | 3.6                                                                                                             | 1            |           | 1.1             |                  |                   | 5            | 3.5                   |                |                             | Predict                      |                      |             |           | 1.1.1   |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1855.6<br>1855.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 877.3<br>1140   | 486.54<br>489.78 | 703.3<br>962.8 | 0.55                    | 0.8           | 10.81           | 1.23<br>0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.61                                                                                                             | 3.81                                                                                                            | 1            |           | 1.21            |                  |                   | 5            | 3.61                  |                |                             |                              |                      |             |           | 100     |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1855.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 782             | 504.25           | 595            | 0.49                    | 0.76          | 11.21           | 1.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.65                                                                                                             | 3.78                                                                                                            | 1            |           | 1.06            |                  |                   | 5            | 3.78                  |                |                             |                              |                      |             |           |         |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1855.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 900             | 514.45           | 739.3          | 0.57                    | 0.82          | 11.43           | 1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6                                                                                                              | 3.67                                                                                                            | 1            | (         | 1.15            |                  |                   | 5            | 3.78                  | 0.61           |                             |                              |                      |             |           |         |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                |                         |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                 |              |           |                 |                  |                   |              |                       |                | -                           |                              |                      |             |           |         |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                |                         |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                 |              |           |                 |                  |                   |              |                       |                | Explain Parameters          | Save Model Load Model        |                      |             |           |         |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                |                         |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                 |              |           |                 |                  |                   |              |                       |                |                             |                              |                      |             |           |         |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                |                         |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                 |              |           |                 |                  |                   |              |                       |                |                             |                              |                      |             |           |         |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                |                         |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                 |              |           |                 |                  |                   |              |                       |                |                             |                              |                      |             |           |         |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                |                         |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                 |              |           |                 |                  |                   |              |                       |                |                             |                              |                      |             |           |         |
| 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                  |                |                         |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                 |              |           |                 |                  |                   |              |                       |                |                             |                              |                      |             |           | - L     |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | _                |                |                         |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                 |              |           |                 |                  |                   |              |                       |                |                             |                              |                      |             |           |         |
| <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test_D          | ata              |                |                         |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                 |              |           |                 |                  |                   |              |                       |                |                             |                              |                      |             |           | -       |

## **Recommendations:**

- 1. Targeted Water Management Interventions:
- Implement precision irrigation techniques in divisions with low adequacy values (0.47-0.64).
- Develop a scheme-wide water monitoring system to address the 27% average relative water deficit.
- Promote the optimal irrigation schedule identified (7-8 times per season, 12-15 day intervals).

- 3. Yield Gap Reduction Strategy:
- Focus on bridging the yield gap between current (3.18-4.02 t/ha) and optimal (6-9 t/ha) production levels.
- Implement targeted interventions in South and North Gezira zones, which show critical underperformance.
- 4. Water Productivity Enhancement:
- Set zone-specific targets to improve water productivity from the current 0.32-0.45 kg/m<sup>3</sup> towards the optimal 0.8-1.6 kg/m<sup>3</sup> range.
- Prioritize interventions in divisions with Water Productivity (WPy) values below 0.4 kg/m<sup>3</sup>.

- 2. Agronomic Practice Optimization:
- Widely disseminate and encourage adoption of best practices identified from high-yielding farmers:
  - Optimal seed rates: 60-70 kg/feddan
  - Timely sowing: 10th-20th November
- Appropriate fertilizer application: DAP 60-80 kg/feddan, urea 100-150 kg/feddan

- 5. Technology Integration and Capacity Building:
- Enhance the integration of remote sensing (WaPOR) data with ground-truth information for more accurate yield estimations.
- Provide training to farmers and extension workers on interpreting and utilizing remote sensing data for decision-making.

## **Recommendations:**

- 6. Research and Innovation:
- Conduct in-depth studies on 'bright spots' to understand and replicate success factors.
- Investigate causes of low performance in specific divisions, particularly Northwest Sennar.
- Explore drought-resistant wheat varieties suitable for divisions with consistently low adequacy values.

8. Knowledge Dissemination:

- Create demonstration plots in 'bright spot' areas for farmer field schools and peer-to-peer learning.
- Develop and distribute region-specific best practice guides based on the findings of this study.

9. Infrastructure Improvement:

- Invest in upgrading irrigation infrastructure, particularly in divisions showing high Actual Evapotranspiration (AETI) values.
- Implement water-saving technologies in areas with low Beneficial Fraction (BF) values.

# **Thank You!**

# **Questions and Discussion**