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SUMMARY 

Master Thesis 

 
THE USE OF REMOTE SENSING FOR MONITORING AGRICULTURAL 

PRODUCTS IN THE GEZIRA IRRIGATION SCHEME, SUDAN 

 

                                          Osman Osama Ahmed IBRAHIM 

 
   Karadeniz Technical University 

The Graduate School of Natural and Applied Sciences 
Geomatics Engineering Graduate Program 

Supervisor: Assoc. Prof. VOLKAN YILMAZ 

2024, 119 Pages 
 

This thesis addresses agricultural management and food security challenges in Sudan's 

Gezira Irrigation Scheme (880,000 hectares). It uses advanced machine learning to enhance 

agricultural monitoring, focusing on wheat production and water productivity optimization, 

the study integrates multiple data sources, employing Support Vector Machine (SVM) and 

Object-Based Image Analysis (OBIA) for crop classification using Sentinel-2 imagery. Var-

ious models, including Random Forest and XGBoost, estimate yield and water productivity, 

Results show high accuracy in crop classification, with SVM slightly outperforming OBIA. 

Crop area estimation achieved a 2-3% error range compared to official records. The research 

reveals complex wheat cultivation dynamics, highlighting non-linear yield factors and sim-

pler water productivity relationships, this work contributes to improved food security, farmer 

livelihoods, and sustainable water use, aligning with UN Sustainable Development Goals. 

The methodology has potential applications in similar global irrigation schemes. 

 

Keywords: Machine Learning in Agriculture; Wheat Yield Prediction; Water Productivity 

Estimation; Remote Sensing; Gezira Irrigation Scheme 
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ÖZET 

Yüksek Lisans Tezi 

 
GEZIRA SULAMA PROJESI'NDEKI (SUDAN) TARIMSAL ÜRÜNLERIN 

İZLENMESINDE UZAKTAN ALGILAMA KULLANIMI 

 

Osman Osama Ahmed IBRAHIM 
 

Karadeniz Teknik Üniversitesi  
Fen Bilimleri Enstitüsü 

Harita Mühendisliği Anabilim Dalı  
Danışman:  Doç. Dr. VOLKAN YILMAZ 

2024, 119 Sayfa 
 

Bu tez, Sudan'ın Gezira Sulama Planı'ndaki (880.000 hektar) tarımsal yönetim ve gıda 

güvenliği sorunlarını ele almaktadır. Buğday üretimi ve su verimliliği optimizasyonuna 

odaklanarak tarımsal izlemeyi geliştirmek için gelişmiş makine öğrenimi kullanmaktadır, 

Çalışma, çoklu veri kaynaklarını entegre ederek, Sentinel-2 görüntülerini kullanarak mahsul 

sınıflandırması için Destek Vektör Makinesi (SVM) ve Nesne Tabanlı Görüntü Analizi 

(OBIA) yöntemlerini uygulamaktadır. Random Forest ve XGBoost dahil çeşitli modeller, 

verim ve su verimliliğini tahmin etmektedir, Sonuçlar, mahsul sınıflandırmasında yüksek 

doğruluk göstermekte, SVM'nin OBIA'ya göre biraz daha iyi performans sergilediğini ortaya 

koymaktadır. Ekim alanı tahmini, resmi kayıtlara kıyasla %2-3'lük bir hata aralığına 

ulaşmıştır. Araştırma, buğday yetiştiriciliğindeki karmaşık dinamikleri ortaya çıkararak, 

doğrusal olmayan verim faktörlerini ve daha basit su verimliliği ilişkilerini vurgulamaktadır, 

Bu çalışma, BM Sürdürülebilir Kalkınma Hedefleri ile uyumlu olarak gıda güvenliğinin 

iyileştirilmesine, çiftçi geçim kaynaklarına ve sürdürülebilir su kullanımına katkıda 

bulunmaktadır. Metodoloji, benzer küresel sulama planlarında potansiyel uygulamalara 

sahiptir. 

 

Anahtar Kelimeler: Tarımda Makine Öğrenimi; Buğday Verimi Tahmini; Su Verimliliği 

Tahmini; Uzaktan Algılama; Gezira Sulama Planı 
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1. GENERAL INFORMATION 

 

1.1. Introduction  

 

The Gezira Irrigation Scheme in Sudan, covering an expansive area of approximately 

880,000 hectares (2.1 million feddans), stands as one of the world's largest irrigation projects 

under a single administration. This vast agricultural landscape presents both unique chal-

lenges and opportunities for agricultural management and remote sensing applications. The 

scheme's structured layout, characterized by an intricate network of canals and fixed plot 

divisions, makes it an ideal candidate for satellite-based crop area estimation, yield predic-

tion, and water productivity analysis. 

In recent years, the application of remote sensing and machine learning techniques in 

agriculture has gained significant traction, offering cost-effective and efficient alternatives 

to traditional field surveys. These advanced methods hold the promise of providing accurate, 

timely, and comprehensive assessments of agricultural systems at scales that were previously 

impractical to monitor. This thesis seeks to harness these technological advancements to 

address critical questions in the context of the Gezira Irrigation Scheme: Can we accurately 

estimate the cultivated areas and the extent of different crops using satellite imagery and 

machine learning techniques? Furthermore, can we reliably estimate yield and water produc-

tivity (WPy) using these advanced methods? 

To answer these questions, our study focuses on analyzing Sentinel-2 satellite imagery of 

the Gezira Scheme from October 2019 to April 2020, encompassing a complete wheat grow-

ing season. We employ a sophisticated methodology that integrates data from multiple 

sources, including FAO’s Water Productivity Open Access Portal (WaPOR) and Google 

Earth Engin derived vegetation indices. This approach is complemented by ground-truth data 

collected from 97 farmer data points, ensuring a robust validation of our models. 

At the core of our analysis is a comprehensive suite of machine learning models, in-

cluding Linear Regression, Random Forest, Gradient Boosting, XGBoost, K-Nearest Neigh-

bors, Decision Tree, and Bagging Regressor. By implementing and comparing these diverse 

algorithms, we aim to identify the most effective approaches for predicting crop yield and 

water productivity in the unique context of the Gezira Scheme.
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The significance of this thesis extends beyond mere technological advancement. By 

integrating crop area estimation with yield prediction and water productivity assessment, we 

aim to provide a comprehensive analysis of agricultural performance in the Gezira Scheme. 

Our goal is not only to accurately map crop areas but also to identify spatial patterns in 

productivity and water use efficiency. These insights offer valuable information for targeted 

interventions and improved resource management strategies, which are crucial in a region 

facing significant challenges in water scarcity and food security. 

Moreover, this study aligns with several United Nations Sustainable Development 

Goals, particularly those related to food security, sustainable agriculture, and water manage-

ment. The methodology developed here has the potential to overcome limitations of tradi-

tional surveying methods, providing a more accurate, timely, and cost-effective approach to 

agricultural monitoring in large irrigation schemes. By addressing yield gaps and water 

productivity issues, this thesis contributes to broader goals of enhancing food security and 

promoting sustainable water use in semi-arid regions. 

The insights gained from this study have far-reaching implications. They can inform 

policy decisions, improve agricultural practices, and ultimately enhance the livelihoods of 

farmers not only in the Gezira Scheme but also in similar irrigation projects worldwide. As 

we face growing challenges in global food production and water resource management, the 

need for innovative, data-driven approaches to agricultural monitoring and management be-

comes ever more pressing. This thesis represents a step forward in meeting these challenges, 

demonstrating the potential of integrating remote sensing, machine learning, and agronomic 

knowledge to drive sustainable agricultural development. 

 

1.2. Literature Review 

 

1.2.1. Estimating Crop Area 

 

Crop area estimation is a fundamental aspect of agricultural monitoring and manage-

ment, providing crucial information about land use, food production capacity, and agricul-

tural trends. It involves determining the total land area devoted to specific crops within a 

given region, typically measured in hectares or acres. Accurate crop area estimates are es-

sential for various stakeholders, including government agencies, agricultural planners, and 
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international organizations, to make informed decisions about food security, agricultural pol-

icy, and resource allocation. 

Gallego et al. (2010) conducted a comprehensive review of remote sensing applica-

tions for agricultural statistics. They examined various satellite-based methods for crop area 

estimation, highlighting the potential for improving accuracy and efficiency compared to 

traditional ground-based surveys. Their review laid the groundwork for subsequent research 

in this field, emphasizing the value of objective and timely information provided by satellite 

imagery. 

Elhag (2014) applied Landsat data to evaluate wheat crop performance in the Gezira 

scheme. While primarily focused on crop performance rather than area estimation, Elhag's 

study demonstrated the feasibility of using medium-resolution satellite imagery for detailed 

agricultural monitoring in large irrigation schemes. This work paved the way for more ad-

vanced applications of remote sensing in the Gezira context. 

Franch et al. (2015) focused specifically on wheat area estimation, which is crucial for 

the Gezira Scheme. They combined MODIS and Landsat data, integrating spectral infor-

mation with phenological data to achieve high accuracy in wheat area estimates across mul-

tiple countries. Their approach showed the potential for improving the timeliness of crop 

production forecasts. 

Waldner et al. (2015)discussed the importance of developing locally adapted ap-

proaches for crop mapping, addressing the challenges of complex irrigation systems. They 

demonstrated the effectiveness of using biophysical variables retrieved from multi-sensor 

high-resolution time series for land cover and crop type classification throughout the grow-

ing season. 

Veloso et al. (2017) explored the integration of multiple data sources, combining Sen-

tinel-1 SAR data with optical imagery for crop type mapping. Their multi-sensor approach 

showed promise for improving crop area estimates, especially in regions prone to cloud 

cover. This could be particularly relevant for the Gezira Scheme, where atmospheric condi-

tions might limit the effectiveness of optical sensors alone. 

Kussul et al. (2017) took a leap forward by applying deep learning techniques to crop 

classification and area estimation. They used Convolutional Neural Networks (CNNs) with 

multi-temporal satellite imagery, demonstrating superior performance compared to tradi-

tional machine learning methods. Their approach showed particular promise for handling the 

complexity and variability of large agricultural systems. 
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Belgiu and Csillik (2018) made significant strides in crop type mapping using Senti-

nel-2 data. They employed Random Forest classifiers with multitemporal imagery, achieving 

high accuracy in distinguishing different crop types. Their method's success in handling the 

temporal dimension of crop growth highlighted the potential for improving crop area esti-

mates in complex agricultural landscapes like the Gezira Scheme. 

Zhong et al. (2019) pushed the boundaries of deep learning applications in crop clas-

sification. They developed a multi-temporal crop classification method using recurrent neu-

ral networks, which outperformed traditional machine learning approaches. Their work 

demonstrated the potential for further improving the accuracy of crop area estimation using 

advanced machine learning techniques. 

These studies collectively demonstrate the evolution of crop area estimation tech-

niques, from basic remote sensing applications to sophisticated deep learning approaches. 

They highlight the potential for significantly improving the accuracy and efficiency of crop 

area estimates in large irrigation schemes like Gezira. However, they also underscore the 

need for careful adaptation of these methods to local conditions, integration of multiple data 

sources, and development of user-friendly tools for practical application. 

The field of crop area estimation has seen remarkable progress between 2010 and 

2019, transitioning from fundamental remote sensing applications to sophisticated deep 

learning techniques. This evolution is characterized by a series of studies that iteratively 

addressed challenges and explored new methodologies. A significant milestone was reached 

with Kussul et al. (2017)  introduction of Convolutional Neural Networks, which demon-

strated superior performance over traditional machine learning methods in crop classifica-

tion and area estimation. Another key advancement came from Veloso et al. (2017) , who 

developed a multi-sensor approach integrating SAR and optical data to overcome persistent 

issues like cloud cover in optical remote sensing. These innovations have collectively en-

hanced the accuracy, efficiency, and adaptability of crop area estimation techniques, making 

them particularly valuable for complex agricultural systems such as large-scale irrigation 

schemes. 

 

1.2.2. Estimating Crop Yield 

 

Crop yield estimation is a critical aspect of agricultural management, particularly in 

large irrigation schemes like the Gezira Irrigation Scheme. Accurate yield predictions are 
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essential for food security planning, resource allocation, and economic forecasting. The in-

tegration of remote sensing technologies with advanced machine learning techniques has 

revolutionized the field of crop yield estimation.  

Lobell (2013) conducted a seminal study on the use of satellite data for crop yield gap 

analysis. He employed a combination of Landsat and MODIS data to estimate wheat yields 

in Punjab, India. Using a light use efficiency model calibrated with historical yield data, the 

author achieved yield estimates with an R² of 0.7 when compared to official statistics. This 

study demonstrated the potential of satellite-based yield estimation in developing countries, 

setting the stage for future research. 

Franch et al. (2015) developed an approach for winter wheat yield forecasting using 

MODIS data. They integrated satellite-derived vegetation indices with a light use efficiency 

model and achieved yield forecasts with R² values ranging from 0.69 to 0.89 across different 

regions of the United States. Their method's success in capturing spatial variations in wheat 

yield demonstrates its potential applicability to diverse wheat-growing regions. 

Azzari et al. (2017) developed a fine-resolution global map of crop yields. They used 

Google Earth Engine to process Landsat imagery and implemented a scalable crop yield 

mapping approach. Their method combined remote sensing data with a light use efficiency 

model and achieved yield estimates for maize and soybean with R² values of 0.85 and 0.74, 

respectively, when compared to county-level yield statistics in the US. This study showcased 

the potential for high-resolution yield mapping at large scales, which could be particularly 

valuable for heterogeneous landscapes like the Gezira Scheme. 

You et al. (2017) made significant advancements by applying deep learning techniques 

to crop yield prediction. They developed a deep Gaussian process model that integrated re-

mote sensing data with weather information for county-level corn yield prediction in the 

United States. Their model outperformed traditional regression methods, achieving an R² of 

0.76. This study highlighted the potential of deep learning approaches for capturing complex, 

non-linear relationships in yield prediction. 

The progression from Lobell (2013)  foundational work to You et al., (2017)  deep 

learning approach reflects the rapid advancements in the field. Each study builds upon pre-

vious work, addressing limitations and exploring new possibilities. For instance, You et al., 

(2017)  deep learning approach addressed the limitations of traditional regression methods 

highlighted in earlier studies. These advancements demonstrate the increasing potential for 
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accurate and scalable crop yield estimation, which could greatly benefit the management of 

large irrigation schemes like Gezira. 

 

1.2.3. Estimating Crop Water Productivity 

 

Crop water productivity, defined as the ratio of crop yield to water consumed, is a 

critical metric for assessing the efficiency of water use in agriculture, particularly in water-

scarce regions and large irrigation schemes like the Gezira Irrigation Scheme. The advent of 

remote sensing technologies and advanced data analysis techniques has significantly en-

hanced our ability to estimate and monitor crop water productivity at various scales.  

Zwart and Bastiaanssen (2004) conducted a pioneering study on crop water productiv-

ity, reviewing measured values for major crops including wheat. They compiled data from 

84 literature sources, finding that the water productivity for wheat ranged from 0.6 to 1.7 

kg/m³. This study established a baseline for water productivity values and highlighted the 

significant variability across different regions and management practices, setting the stage 

for remote sensing-based approaches to capture this variability at larger scales. 

Bastiaanssen and Steduto (2017) developed a methodology for mapping water produc-

tivity using remote sensing data. They introduced the Water Productivity Score (WPS) at 

global and regional levels, utilizing data from the MODIS satellite. Their approach, which 

integrated satellite-derived evapotranspiration and biomass production estimates, achieved 

correlations of 0.8-0.9 with field measurements of water productivity. This study demon-

strated the potential of remote sensing for large-scale water productivity assessment, paving 

the way for applications in complex irrigation schemes like Gezira. 

Jiang et al. (2019)developed a method for estimating daily crop water productivity 

using the SEBAL model and time-series MODIS data. Applied to winter wheat in the North 

China Plain, their approach achieved an R² of 0.82 when compared to field measurements. 

This study highlighted the importance of capturing temporal variations in water productivity 

throughout the growing season, which could be particularly relevant for optimizing irrigation 

management in schemes like Gezira. 

Pelletier et al. (2019) employed a machine learning approach, specifically Random 

Forests, to estimate crop water productivity using remote sensing data. Applied to irrigated 

perimeters in Morocco, their model achieved an R² of 0.7 for water productivity estimation. 

This study demonstrated the potential of machine learning techniques for improving water 
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productivity estimates in data-scarce environments, which could be valuable for regions with 

limited field measurements. 

Blatchford et al. (2020) applied the FAO's Water Productivity Open Access Portal 

(WaPOR) to assess water productivity in the Nile Delta. They used remotely sensed evapo-

transpiration and biomass production data to estimate water productivity for multiple crops, 

including wheat. Their study achieved an R² of 0.7 when comparing remotely sensed esti-

mates to field measurements, highlighting the potential of open-access remote sensing data 

for water productivity monitoring in large irrigation schemes. 

Chiu et al. (2020) combined optical (Sentinel-2) and thermal (Landsat 8) data to esti-

mate evapotranspiration and biomass production for water productivity assessment. Their 

approach, applied to wheat fields in northwest China, achieved an R² of 0.76 for water 

productivity estimation. This multi-sensor approach showcased the potential for improving 

the accuracy and spatial resolution of water productivity estimates. 

Ayyad et al. (2021) developed an integrated approach combining the AquaCrop model 

with remote sensing data for estimating water productivity of wheat in Egypt's Nile Delta. 

Their method, which incorporated Sentinel-2 derived leaf area index into the crop model, 

achieved an R² of 0.85 for water productivity estimation. This study showcased the potential 

of combining crop models with remote sensing data for improved water productivity assess-

ment. 

The progression from Zwart and Bastiaanssen (2004)  review to Ayyad et al. (2021)  

integrated modeling approach reflects the rapid advancements in the field. Each study builds 

upon previous work, addressing limitations and exploring new possibilities. For instance, 

Chiu et al., (2020)  focus on temporal dynamics tackled the challenge of capturing seasonal 

variations in water productivity. These advancements demonstrate the increasing potential 

for accurate and scalable crop water productivity estimation, which could greatly benefit the 

management of large irrigation schemes like Gezira. 

 

1.3. Motivation and Research Gaps 

 

The Gezira Irrigation Scheme in Sudan stands as a monumental agricultural endeavor, 

pivotal to the nation's food security, economic stability, and rural livelihoods. Despite its vast 

potential and historical significance, the scheme faces substantial challenges in optimizing 

wheat production, a crop crucial for reducing Sudan's import dependency and ensuring 



8 
 

 
 

domestic food security. This thesis is driven by several critical factors that underscore its 

importance and potential impact: 

1. Productivity Gap and Food Security Imperatives: Current wheat yields in the Gezira 

Scheme, ranging from 3.18 to 4.02 t/ha, fall significantly short of the optimal range of 

6-9 t/ha (FAO, 2020). This substantial yield gap represents not only unrealized agri-

cultural potential but also missed opportunities for enhancing food security and farmer 

incomes. Closing this gap could dramatically improve Sudan's self-sufficiency in 

wheat production, addressing a core national food security challenge. 

Research Gap: While studies like Elhag (2014) have applied remote sensing to crop 

performance assessment in Gezira, there's a lack of comprehensive research using advanced 

Machine learning techniques for accurate, field-level yield estimation in this complex irri-

gation scheme. 

2. Water Scarcity and Resource Efficiency: In a region increasingly threatened by wa-

ter scarcity and climate change, the observed water productivity values of 0.32-0.45 

kg/m³, compared to a target of 0.58 kg/m³ (Adam et al., 2021), highlight a critical need 

for improved water management. Enhancing water use efficiency is not just an agri-

cultural imperative but a national priority for sustainable resource management. 

Research Gap: Despite the work of Bastiaanssen and Steduto (2017) on water produc-

tivity mapping, there's a lack of high-resolution, temporally dynamic water productivity as-

sessments for wheat in large irrigation schemes like Gezira, especially using advanced deep 

learning techniques. 

3. Spatial Variability and Targeted Interventions: The significant variations in produc-

tivity across different zones of the scheme, as revealed by our analysis, suggest that 

localized factors play a crucial role in determining yields. Understanding and address-

ing these spatial variations could lead to targeted interventions and more efficient re-

source allocation, unlocking the scheme's full potential. 

Research Gap: While Kussul et al. (2017) demonstrated the power of deep learning for 

crop classification, there's insufficient research on applying these techniques to capture and 

explain spatial variability in crop area, yield, and water productivity within complex irriga-

tion schemes. 

4. Integration of Advanced Technologies: This study's innovative approach, combining 

advanced remote sensing techniques (Sentinel-2 imagery) with deep learning models, 

represents a significant step forward in agricultural monitoring and management. The 
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integration of Support Vector Machine (SVM) and Object-Based Image Analysis 

(OBIA) for crop classification demonstrates the potential of cutting-edge technology 

in improving agricultural decision-making and precision farming practices. 

Research Gap: Despite the promise shown by Pelletier et al. (2019)in using temporal 

convolutional neural networks for satellite image time series classification, there's a lack of 

end-to-end deep learning pipelines that simultaneously address crop area estimation, yield 

prediction, and water productivity assessment in irrigation schemes. 

5. Bridging Technology and Farm Practices: The inclusion of ground-truth data and 

farmer surveys provides crucial insights into on-the-ground practices associated with 

higher yields. This bottom-up approach ensures that our recommendations are not only 

scientifically sound but also practically applicable and aligned with farmers' realities. 

Research Gap: There's insufficient research on how to effectively translate complex 

deep learning model outputs into actionable insights for farmers and irrigation managers, 

particularly in the context of large schemes like Gezira. 

6. Climate Change Adaptation and Resilience: As climate change threatens to disrupt 

traditional agricultural patterns, enhancing the efficiency and resilience of major irri-

gation schemes like Gezira is crucial for long-term food security and economic stabil-

ity in Sudan. 

Research Gap: While Ayyad et al. (2021) integrated crop models with remote sensing 

for water productivity estimation, there's a lack of research on using deep learning to model 

and predict the impacts of climate change on crop area, yield, and water productivity in 

irrigation schemes. 

7. Economic Development and Livelihoods: Improving the Gezira Scheme's produc-

tivity has direct implications for farmers' livelihoods, rural development, and the na-

tional economy. By focusing on enhancing agricultural productivity and water use ef-

ficiency, this study contributes to broader economic development goals and the im-

provement of rural livelihoods. 

Research Gap: There's limited research on how improvements in crop area estimation, 

yield prediction, and water productivity assessment through deep learning can translate into 

economic benefits for farmers and the broader economy, particularly in the context of large 

irrigation schemes. 

In conclusion, this research is driven by the urgent need to optimize the performance 

of the Gezira Irrigation Scheme, a critical asset for Sudan's food security and economic 
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development. By addressing these research gaps through the innovative application of re-

mote sensing and deep learning techniques, this study has the potential to significantly en-

hance agricultural productivity, water use efficiency, and overall scheme management. The 

findings could not only transform the Gezira Scheme but also provide valuable insights for 

similar irrigation projects globally, contributing to broader efforts in sustainable agriculture 

and food security.



 
 

 
 

2. MATERIAL AND METHODS  

 

2.1. Study Area 

 

2.1.1. Introduction 

 

The Gezira Scheme, located between the Blue Nile and the White Nile Rivers to the 

south of Khartoum, Sudan, is situated in a semi-arid zone (Figure 1) (Ahmed, 2009; Al Zayed 

et al., 2015a). Its origins date back to 1911, when an experimental farm was established at 

Tayba village on the west bank of the Blue Nile (Ahmed, 2009). The Gezira scheme is char-

acterized by its large arable area of about 0.9 million hectares (2.2 million feddans) (see 

Table 1) (Ahmed, 2009). Each farmer owns an average of 8.4 ha, divided into four plots, 

where they cultivate a range of crops, including cotton, wheat, sorghum, groundnuts, and 

vegetables (Osman et al., 2011). 

 
Table 1. General Information About Gezira Scheme 

 
Project Name Total Area (Mil-

lion Feddans) 
 

Number of Irrigation Di-

visions 
 

Number of Irrigation Sec-

tors 

Gezira and Man-

agil 

2.2 34 61 

 

 
 

Figure 1. Location of the Gezira Scheme
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2.1.2. Irrigation Management 

 

The irrigation system is composed of two main canals that run from Sennar Dam (Fig-

ure 2); supplied by over 30,000 major canal networks. (Figure 3) illustrates the canalization 

system layout in the Gezira and Managil, and table 1 summarizes the details of the canals; 

the Gezira canal, which has a capacity of 168 m3/s, and the Managil canal, which has a 

capacity of 186 m3/s. The main canals deliver water to major canals. Then, we convey water 

to minor canals at determined and fixed levels, ensuring equity in distribution at the field 

canals (Abu Ishreen). Farmers use the internal canals (Abu Sitta) to irrigate their farms (Fig-

ure 3) (Elshaikh and Ahmed, 2018). 

Over the years, various combinations of three key institutions have managed the Ge-

zira Scheme: the Sudan Gezira Board (SGB), the Ministry of Irrigation and Water Resources 

(MOIWR), and the Water Users Associations (WUAs) (Babiker, 2014; World Bank, 2000). 

Initially, from 1925 to 1994, the MOIWR held primary responsibility for the entire irrigation 

system, with limited SGB participation (Babiker, 2014). 

In 1994, the Sudanese government's policy of economic liberalization led to the estab-

lishment of the Irrigation Water Corporation (IWC) as part of the MOIWR, aiming to cover 

operation and maintenance costs through water fees collected from farmers (Babiker, 2014). 

In 1999, the SGB assumed responsibility for operating and maintaining Minor canals, while 

the MOIWR retained control over Main and Major canals (World Bank, 2010). 

This arrangement continued until the Gezira Scheme Act of 2005, which mandated a 

shared management approach between WUAs and MOIWR. The MOIWR managed Main 

and Major canals, while the WUAs held responsibility for Minor canals (World Bank, 2010). 

In 2010, the Gezira irrigation unit was transferred from MOIWR to SGB, and by 2012, 

the MOIWR was dissolved (Tajelsir, 2013). At this stage, the SGB and WUAs shared re-

sponsibilities, with the SGB overseeing Main and Major canals and the WUAs managing 

Minor canals. Finally, by late 2014, the Act of 2005 was amended, leading to the dissolution 

of the WUAs, and the sole responsibility for irrigation management at the Gezira Scheme 

returned to the MOIWR (Ministry of Justice, 2014). Table 2 outlines these organizations and 

their historical periods. 
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Table 2. Canalization Characteristics of the Gezira Scheme 
 

Canal Number Capacity 

(m3/s) 

Average width 

(m) 

Length 

(km) 

Main 2 354 50 261 
Branch 11 25-120 30 651 
Major 107 1.2-15 20 1,650 
Minor 1,700 0.5-1.5 6 8,120 

Abu Ishreen 29,000 0.116 1 40,000 
Abu Sitta 350,000 0.05 0.5 100,000 

 

Table 3. The Main Organizations Responsible for Irrigation Management 
 

Organization (Full Name) Organization (Short 

Name) 

Period Duration 

(Years) 

Ministry of Irrigation and Water Re-

sources 

MOIWR 1925-

1994 

69 

Irrigation Water Corporation IWC 1995-

1998 

3 

Sudan Gezira Board & Ministry of Irri-

gation and Water Resources 

SGB & MOIWR 1999-

2005 

6 

Water Users Associations & Ministry of 

Irrigation and Water Resources 

WUAs & MOIWR 2006-

2010 

4 

Water Users Associations & Sudan Ge-

zira Board 

WUAs & SGB 2011-

2015 

4 
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Figure 2. Irrigation System for Gezira Scheme- (MOIWR ,2016) 
 

 

 
 
 

Figure 3. Layout and Irrigation Distribution Network of Gezira Scheme – (Hydrau-

lics Research Center, 2015) 
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2.1.3. Climate 

 

The Gezira Scheme is situated in a hot, semi-arid region characterized by distinct sea-

sonal variations. Adam et al. (2015) describes three main seasons, winter (November to Feb-

ruary), summer (April and May), and autumn (July to September), with March, June, and 

October serving as transitional periods. Mahmoud et al. (2021) report a north-south gradient 

in rainfall intensity, with long-term annual averages of approximately 160 mm in Khartoum, 

360 mm in Wad Medani, and 480 mm in Sennar. According to Elagib and Mansell (2020), 

daily mean temperatures in Wad Medani, central to the scheme, typically range from 25°C 

in winter to 32°C in summer, with autumn temperatures averaging around 30°C. These cli-

matic conditions significantly influence agricultural practices and water management strat-

egies within the Gezira Scheme. 

 

2.1.4 Administrative Division of the Gezira Irrigation Scheme 

 

The Gezira Irrigation Scheme in Sudan is organized into a hierarchical administrative 

structure, reflecting both its irrigation system and management units (Figure 4). This struc-

ture facilitates efficient water distribution and scheme management (Eldaw, 2004).at the 

smallest level is the 'Hawash', which typically represents an individual farmer's plot or a 

small group of adjacent plots. Multiple Hawash units are grouped into a 'Nemrah', which 

forms a basic operational unit for water distribution (Plusquellec, 1990), Several Nemrah 

units are served by a single Canal, forming the next level of the hierarchy. These canals are 

crucial for water conveyance across the scheme (Barnett, 2019a), the Office level oversees 

multiple canals, coordinating water distribution and agricultural activities within its jurisdic-

tion. This level plays a vital role in day-to-day operations and farmer interactions 

(Plusquellec, 1990), above the Office level is the Sub-Division, which manages several of-

fices. This level is responsible for coordinating larger-scale operations and resource alloca-

tion (Eldaw, 2004),at the highest level of the scheme's administrative structure is the Main 

Division. This level oversees multiple Sub-Divisions and is responsible for overall scheme 

management, policy implementation, and coordination with national agricultural and water 

resource agencies (Barnett, 2019b),This hierarchical structure allows for efficient manage-

ment of the vast Gezira Irrigation Scheme, ensuring water reaches from the main supply 

down to individual farm plots while facilitating administrative oversight at various levels. 
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Figure 4. Administrative Division of the Gezira Irrigation Scheme 

 

 

Red = Egabel Office 
 

Black= 4 canal    

 
Figure 5. Administrative and Irrigation Structure of the Gezira Scheme 

 

2.1.5. Soil Characteristics of the Gezira Scheme 

 

The Gezira Scheme is predominantly characterized by Vertisols, locally known as 

"black cotton soil" (Abdelhadi et al., 2000). These soils have the following critical proper-

ties: 

1. High clay content (50-60%), resulting in significant shrink-swell behavior (Abdalla 

et al., 2011). 
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2. Deep soil profile, often exceeding 150 cm (Abdelhadi et al., 2000). 

3. Alkaline pH (7.5-8.5) and low organic matter content (<1%) (Adam et al., 2015). 

4. High water holding capacity but challenging water management due to cracking 

when dry (Elias et al., 2001). 

5. Relatively fertile despite low organic matter, due to high cation exchange capacity 

(Elias et al., 2001). 

These soil characteristics significantly influence irrigation management, crop selec-

tion, and agricultural practices in the Gezira Scheme. While providing good potential for 

irrigated agriculture, they require careful management to maintain productivity and prevent 

degradation (Adam et al., 2015). 

 

2.1.6. Comprehensive Analysis of Winter and Summer Cropping Schedules  

 

Tables 4 and 5 illustrate the cultivation schedules for summer and winter crops, re-

spectively, in the Gezira Irrigation Scheme. These tables provide a comprehensive overview 

of the planting and harvesting timelines for various crops grown within the scheme's agri-

cultural calendar. 

 

Table 4. Winter Crop Cultivation Schedule in the Gezira Irrigation Scheme 
 

Crop Name Planting Month Germination 

Stage (days) 
Growth Stage 

(days) 
Maturity 

Stage (days) 
Harvest 

Month 

Wheat November 5-8 30-40 90-120 March 
Barley November 5-7 30-45 90-110 April 

       Chickpea December 7-14 40-60 90-120 March 
Cotton October 7-10 50-70 150-180 March 

 

Table 5. Summer Crop Cultivation Schedule in the Gezira Irrigation Scheme 
 

Crop Name Planting 

Month 
Germination 

Stage (days) 
Growth 

Stage (days) 
Maturity 

Stage (days) 
Harvest Month 

Sorghum May 3-5 35-50 95-110 Septem-

ber 
Maize May 4-7 45-60 80-100 August 

Ground-

nut 
June 10-14 40-60 120-

150 
October 

Cotton Octo-

ber 
7-10 50-70 150-

180 
March 
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2.2. Crop Classification Methods 

 

Thesis methodology is built on a statistical foundation, designed to accurately estimate 

crop areas in the Gezira Irrigation Scheme using satellite imagery and advanced classifica-

tion techniques. The approach combines field surveys with sophisticated image analysis to 

provide a comprehensive assessment of agricultural productivity across the scheme. 

The study incorporates four primary data sources: 

a) Hydraulics Research Center (HRC) Survey: Ground survey data collected by 

trained   personnel from HRC-Sudan, serving as the primary reference for culti-

vated areas. 

b) Agricultural Inspector (OFFICE) Survey: Data collected by agricultural inspectors 

across three offices, covering ten canals within the Gezira Scheme. 

c) Satellite Imagery: Sentinel-2A imagery acquired on February 2, 2020. 

 

2.2.1. Sampling Strategy 

 

This study employed a carefully designed sampling strategy to ensure comprehensive 

and representative coverage of this vast agricultural area. We selected three administrative 

offices within the scheme to serve as representative samples,Wad Elbasier Office, Elhoosh 

Office, and Elgabel Office. This selection ensures a quasi-geographical distribution across 

the scheme, capturing its spatial variability. Figure 6 illustrates the geographical distribution 

of these selected offices within the Gezira Scheme, providing a visual representation of our 

sampling approach. 

Within each selected office, we further refined our sampling by choosing a group of 

canals to represent the agricultural diversity of that office. Figure 7 depicts the layout of the 

chosen canals within each office. For Wad Elbasier Office, we selected Ganabiah Kafe Ca-

nal, Shakaira Canal, and Umtumoun Canal. In Elhoosh Office, our focus was on Elhoosh 

Canal, Osman Canal, and Wadelmounier Canal. For El Gabel Office, we examined Elwadi 

Canal (both Right and Left branches), Eltaamier Canal, Elgalaa Canal, and Elkaramah Canal. 

This hierarchical sampling approach allows us to extrapolate our findings from the 

canal level to the office level, and ultimately to the entire Gezira Scheme. By analyzing these 

carefully selected samples at different administrative levels, we can capture both localized 

variations and broader patterns across the scheme. The strategy enables us to calculate a 
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statistically rigorous error rate for the entire scheme while maintaining the integrity of our 

analysis. 

Our approach provides a robust foundation for assessing the accuracy of our crop clas-

sification and area estimation methods, ensuring that our results are not only precise for the 

sampled areas but also reliably scalable to the entire Gezira Irrigation Scheme.  

 

 
 

Figure 6. Spatial Distribution of the Three Selected Offices (Wad Elbasir, Elgabel, 

Elhoosh) within Gezira Scheme 
 

  
 

 
Figure 7. Spatial Distribution of the 10 Selected Canals within Selected Offices 
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2.2.2. Field Work Methodology 

 

The Hydraulic Research Center assembled and trained a team of technicians and sur-

veyors for field work, emphasizing the importance of this experiment. The fieldwork in-

volves comprehensive area surveys of the selected canals for each office. We collected ap-

proximately 807 GPS-tagged crop samples from each office to aid in the classification pro-

cess. 

 

2.2.3. Advanced Statistical Modeling for Crop Classification 

 

For crop classification, we employed two advanced techniques: Support Vector Ma-

chine (SVM) and Object-Based Image Analysis (OBIA). SVM, a powerful machine learning 

algorithm, was chosen for its ability to handle complex, non-linear classification tasks effec-

tively. OBIA, on the other hand, was selected for its capacity to incorporate spatial and con-

textual information in the classification process, which is particularly useful in agricultural 

landscapes with distinct field boundaries. 

We applied both methods to the preprocessed Sentinel-2 imagery, comparing their per-

formance in accurately identifying different crop types, with a particular focus on wheat. 

The results from these two methods were rigorously compared to assess their relative 

strengths and weaknesses in the context of the Gezira Irrigation Scheme.  

Additionally, we documented detailed observations for all canals and offices included 

in our study area. These observations encompassed not only the quantitative results of our 

classifications, but also qualitative insights gained during the analysis process. This compre-

hensive approach allowed us to capture both the broad patterns and nuanced details of crop 

distribution across the Gezira Irrigation Scheme, providing a rich dataset for further analysis 

and interpretation, Figure 8 Multi-Source Integration Methodological Framework for Ad-

vanced Precision Crop Mapping. 
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Table 6. Equations and Descriptions for Area Calculations and Comparative Analyses 

in Crop Classification 
 

            Code Equation Name         Equation Equation NO. Description 

HRC HRC Area HRC   Area surveyed 

by the Hydrau-

lics Research 

Center 
OFFICE Office Area OFFICE  Area surveyed 

by the agricul-

tural inspector 
SVM Satellite Area 

(Method 1) 
SVM  Area obtained 

from the satel-

lite (Method 1) 
OBIA Satellite Area 

(Method 2) 
OBIA  Area obtained 

from the satel-

lite (Method 2) 
RS Average Satellite 

Area 
(SVM +  OBIA)/2 (1) Average area 

obtained from 

the satellite us-

ing both meth-

ods 
Diff OBIA SVM Difference OBIA 

SVM 
(OBIA −  SVM)

OBIA 
 

∗ 100 

(2) Percentage dif-

ference between 

OBIA and SVM 

areas 
Avg. SVM OBIA Average SVM 

OBIA 
(SVM +  OBIA)

2 
 

(3) Average area be-

tween SVM and 

OBIA 
Diff HRC Office Difference HRC 

Office 
(HRC −  OFFICE)

HRC 
∗ 100 

(4) Percentage dif-

ference between 

HRC and Office 

areas 
Diff RS HRC Difference RS 

HRC 
(RS −  HRC)

RS 
∗ 100 

(5) Percentage dif-

ference between 

RS and HRC ar-

eas 
Diff (Gardens/Chick-

pea 
/Cotton/Other) 

Cotton Differ-

ence 
(HRC −  RS)

2 
∗ 100 

(6) Percentage dif-

ference for cot-

ton crop 
Diff W (Wheat) Wheat Differ-

ence 
(HRC −  RS)

2 
∗ 100 

(7) Percentage dif-

ference for 

wheat crop 
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Figure 8. Multi-Source Integration Methodological Framework for Advanced Preci-

sion Crop Mapping 
 

2.3.4. Software and Tools for Crop Classification 

 

The crop classification process in our study relied on a suite of specialized software 

tools, each chosen for its specific capabilities in handling and analyzing remote sensing data. 

For the initial preprocessing of spatial data, we utilized ArcGIS Pro (version 3.3), leveraging 

its robust geospatial analysis features to prepare our Sentinel-2 imagery for classification. 

 

Data Collection 

Ground Surveys Satellite Imagery - Sentinel-2A (acquired 02-02-2020) 

Agricultural Inspector (OFFICE) HRC-Sudan Survey 

3 offices, 10 canals 

Image  

Processing 

Support Vector Machine 

(SVM) 

Object-Based Image Analysis 

(OBIA) 

Area Calculations 

Average Satellite Area (RS) 

(SVM+OBIA)/2 

HRC Area OFFICE Area 

   Comparative Analysis 

Satellite Method Comparison 
(OBIA vs SVM) 

Satellite vs Ground Comparison (RS 
vs HRC) 

Ground Survey Comparison (HRC 
vs OFFICE) 

   Error Calculations 

    Canal Level  Office (Block) 

Root  

Mean Square 

 (RMS) Error 

Statistical  

Analysis 

Error Rate Distribu-

tion 

Accuracy Assessment 

Results  

Compilation 

By Administrative Level 

(Canal, Office) 
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This preprocessing stage included tasks such as image mosaicking, atmospheric correction, 

and feature extraction. 

For the Support Vector Machine (SVM) classification, we continued to use ArcGIS 

Pro, taking advantage of its built-in machine learning algorithms and its ability to handle 

large volumes of geospatial data efficiently. The Object-Based Image Analysis (OBIA) was 

performed using eCognition software, which is specifically designed for advanced image 

segmentation and object-based classification tasks. eCognition's rule-based classification ca-

pabilities allowed us to incorporate spatial and contextual information into our analysis, im-

proving the accuracy of our crop identification. 

For the calculation of crop areas, error analysis, and other statistical analyses, we em-

ployed Microsoft Excel. Excel's versatile spreadsheet functionality and built-in statistical 

tools provided an efficient platform for organizing our data, performing calculations, and 

conducting comparative analyses between different classification methods and ground truth 

data. 

         The integration of these powerful software tools enabled us to perform a comprehen-

sive and accurate classification of crop types across the Gezira Irrigation Scheme, followed 

by detailed area calculations and error assessments. By combining the strengths of ArcGIS 

Pro for preprocessing and SVM classification, eCognition's advanced OBIA capabilities, and 

Excel's data analysis functions, we were able to achieve high-quality results in our crop map-

ping efforts and subsequent analyses. This approach demonstrates the importance of select-

ing and integrating appropriate software tools to effectively handle the complex tasks of crop 

classification, area estimation, and accuracy assessment using remote sensing data. 
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Figure 9. Comprehensive Workflow for Crop Area Classification Using ArcGIS Pro 

and eCognition  
 

2.3.5. WaPOR Data Sources 

 

• General Information 

 

The Water Productivity Open Access Portal (WaPOR) developed by the Food and Ag-

riculture Organization (FAO), provides a comprehensive set of remotely sensed data crucial 

for agricultural water management and productivity assessment. This study leverages WaP-

OR's Level 2 datasets, which offer a resolution of 100 meters for the Gezira Irrigation 

Scheme in Sudan. The key WaPOR layers utilized include actual evaporation (E), transpira-

tion (T), and net primary production (NPP), all available at a (10-day) timescale. Addition-

ally, the research incorporates   precipitation data at 5 km resolution, reference evapotran-

spiration at 20 km resolution, and annual land cover classification at 100 m resolution. To 

https://wapor.apps.fao.org/home/WAPOR_2/1
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ensure consistency in spatial analysis, the precipitation and reference evapotranspiration da-

tasets were resampled to 100 m resolution using nearest-neighbor resampling techniques. 

The WaPOR database covers Africa and the Near East regions, providing near-real-

time data from 2009 to the present. For this study of the Gezira Scheme, data from 2014 

onwards were used to ensure consistency, as earlier data were derived from resampled 

MODIS satellite imagery at 250 m resolution, which could introduce inconsistencies in the 

analysis. The methodology used for compiling the actual evapotranspiration in WaPOR is 

based on the ETLook method, further developed by the FRAME consortium. This method 

has been found suitable for inter-plot comparison of irrigation performance indicators for 

plots larger than 2 hectares, which is appropriate for the large-scale farming operations in 

the Gezira Scheme. 

WaPOR data undergoes continuous improvements, with the latest version (WaPOR 

v2.1) incorporating enhancements based on quality assessments by IHE Delft and ITC. 

These datasets provide a cost-effective means for irrigation performance assessment in the 

Gezira Scheme, offering spatially distributed data that covers long periods and wide areas. 

This allows for retrospective analysis, which is particularly valuable in regions like Sudan 

where ground-based data collection can be challenging or costly. The integration of WaPOR 

data with field observations and agronomic principles enables a comprehensive assessment 

of irrigation performance in the Gezira Scheme, including indicators such as uniformity, 

equity, adequacy, and land and water productivity. This approach demonstrates the potential 

of remote sensing technologies in revolutionizing agricultural water management and 

productivity analysis in one of the world's largest irrigation projects, providing valuable in-

sights for improving wheat production and water use efficiency in the semi-arid climate of 

Sudan.
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Table 7. Comprehensive Overview of the Key Parameters Used in the WaPOR Sys-

tem,  
 

Parameter Description Type Source Role in WaPOR 

NDVI Normalized Differ-

ence Vegetation In-

dex 

Intermediate with exter-

nal data 
Satellite imagery Key input for multiple 

components (e.g., Phe-

nology, fAPAR) 
Phenology Crop growth stages WaPOR layer internal 

data only 
Derived from NDVI Determines growing 

seasons 
fAPAR Fraction of Ab-

sorbed Photosyn-

thetically Active 

Radiation 

Intermediate internal 

only 
Derived from NDVI Input for NPP calcula-

tion 

Weather data Temperature, hu-

midity, wind speed 
Intermediate with exter-

nal data 
Meteorological da-

tasets 
Input for Reference ET 

Solar Radiation Incoming solar en-

ergy 
Intermediate with exter-

nal data 
Satellite/reanalysis 

data 
Input for energy bal-

ance calculations 
Land Cover Classification of 

land use types 
WaPOR layer with ex-

ternal data 
Satellite imagery + 

global products 
Determines crop types 

and areas 
Reference ET Potential evapo-

transpiration 
WaPOR layer with ex-

ternal data 
Calculated from 

weather data 
Baseline for actual ET 

estimation 
Soil moisture 

stress 
Water availability 

for plants 
Intermediate with exter-

nal data 
Derived from LST 

and NDVI 
Modifies ET and NPP 

calculations 
Precipitation Rainfall amount WaPOR layer with ex-

ternal data 
Satellite/ground ob-

servations 
Input for water balance 

Surface albedo Reflectivity of land 

surface 
Intermediate with exter-

nal data 
Derived from satellite 

data 
Input for energy bal-

ance 
NPP Net Primary Pro-

duction 
WaPOR layer internal 

data only 
Calculated from mul-

tiple inputs (NDVI, 

fAPAR, weather, soil 

moisture stress, land 

cover)  

Estimates biomass pro-

duction 

TBP Total Biomass Pro-

duction 
WaPOR layer internal 

data only 
Derived from NPP Input for water produc-

tivity 
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Table 8. Structure of WaPOR Database 
 

Level Resolu-

tion 

Coverage Monitoring Reference 

 

Level 

1 

 

250 me-

ters 

Continental (Africa and 

Near East) 

• Continuous since 

April 2009 

• Every 10 days or 

daily 

Mannaerts et al. (2020) 

 

Level 

2 

 

100 me-

ters 

• 21 countries 

• 5 river basins 

• Continuous since 

April 2009 

• Every 10 days or 

daily 

WaPOR Database Meth-

odology (2020) 

 

 

 

 

Level 

3 

 

 

 

 

30 me-

ters 

8 regions in: 

• Lebanon 

• Egypt 

• Ethiopia 

• Mali 

• Kenya 

• Mozambique 

• Sudan 

• Continuous since 

April 2009 

• Every 10 days or 

daily 

Blatchford et al. (2020) 
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Table 9. The WaPOR Layers Used for Analyses 
 

No. WaPOR 

Data 

Definition Spatial 

resolution 

Temporal 

resolution 

Units Temporal 

coverage 

Reference 

1 Evapo-

transpira-

tion  

Total water con-

sumed through 

evaporation, tran-

spiration, and in-

terception 

100 m  10-day mm/dekad 2009 - pre-

sent 

WaPOR 

Database 

Methodol-

ogy (2020) 

2 Transpira-

tion (T) 

Water consumed 

by plants and re-

leased as vapor 

100 m  10-day mm/dekad 2009 - pre-

sent 

WaPOR 

Database 

Methodol-

ogy (2020) 

3 Net Pri-

mary Pro-

duction 

(NPP) 

Rate of biomass 

production by 

plants 

100 m   gC/m²/day 2009 - pre-

sent 

Running et 

al. (2004) 

4 Land 

cover 

classifica-

tion 

(LCC) 

Categorization of 

land surface cover 

types 

100 m Annual N/A 2009 - pre-

sent 

WaPOR 

Database 

Methodol-

ogy (2020) 

5 Precipita-

tion (PCP) 

Amount of water 

falling as rain or 

snow 

5 km   mm/dekad 2009 - pre-

sent 

WaPOR 

Database 

Methodol-

ogy (2020) 

6 Reference 

Evapo-

transpira-

tion 

(RET) 

ET from a 

hypothetical grass 

reference crop 

20 km Daily mm/day 2009 - pre-

sent 

Allen et al. 

(1998) 
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Figure 10. WaPOR Layers Used for The Analyses after Download 
 

• A Framework for Assessing Irrigation Performance Using WaPOR Data: 

 

Figure 11 shows the flowchart describing the approach to assessing WaPOR-based ir-

rigation performance indicators at Gezira Scheme for Wheat analysis. the approach to as-

sessing WaPOR-based irrigation performance indicators would follow a similar framework, 

adapted to the specific context of wheat cultivation in Sudan. The process can be described 

in three main steps: 

Firstly, the WaPOR data layers for actual evapotranspiration (ETa), reference evapo-

transpiration (RET), and net primary production (NPP) were preprocessed. This prepro-

cessing involved matching the spatial resolution of all layers to 100m (the highest resolution 

available for the Gezira Scheme in WaPOR), removing non-crop pixels using the land cover 

classification (LCC) layer to focus only on wheat fields, and performing a quality check to 

ensure data reliability.  

Secondly, seasonal calculations were performed for each wheat plot within the Gezira 

Scheme. The seasonal actual evapotranspiration (ETa,s), seasonal potential evapotranspira-

tion (ETp,s), and seasonal NPP (NPPs) were computed using the respective WaPOR layers. 

These calculations considered the specific start of season (SOS) and end of season (EOS) 

dates for wheat in the Gezira Scheme, which typically runs from November to March. The 

seasonal potential evapotranspiration (ETp,s) was derived by combining the reference evap-

otranspiration (RET) data with wheat-specific crop coefficients (Kc) appropriate for the local 

climate and growing conditions. 

Finally, the irrigation performance indicators were analyzed. The seasonal NPP data 

would be converted to above-ground biomass (B) for wheat using crop-specific parameters 

including the above-ground over total biomass ratio (AOT), a light use efficiency correction 
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factor (fc), and the moisture content of fresh biomass (mc). The wheat yield was to be then 

estimated by multiplying the biomass by the harvest index (HI) for wheat.  

This approach allowed for the calculation of key irrigation performance indicators for 

the Gezira Scheme, including: 

1. Uniformity of water consumption within fields 

2. Equity of water distribution across the scheme 

3. Adequacy of irrigation (comparing actual to potential evapotranspiration) 

4. Land productivity (wheat yield per unit area) 

5. Water productivity (wheat yield per unit of water consumed) 

These indicators provided a comprehensive assessment of irrigation performance 

across the Gezira Scheme, offering valuable insights for improving water management and 

wheat productivity in this crucial Sudanese agricultural region. 

 

 
 

Figure 11. Schematic Representation of WaPOR-Based Irrigation Performance Assessment 

Framework 
 

Local information: The Gezira Irrigation Scheme analysis was carefully compiled to 

ensure accurate and context-specific assessment of wheat cultivation performance. The land 

cover classification for wheat was derived from a combination of Support Vector Machine 

(SVM) and Object-Based Image Analysis (OBIA) techniques applied to main thematic crop 

data. This approach allowed for a precise delineation of wheat-cultivated areas within the 

scheme, essential for focusing the analysis on relevant agricultural zones (Figure 12). 

The scheme boundary was obtained from a comprehensive database specifically cre-

ated for the Gezira Irrigation Scheme. This database provides an accurate representation of 
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the scheme's extent, crucial for defining the spatial scope of the analysis and ensuring all 

calculations are performed within the relevant agricultural area (Figure 13). 

The growing season for wheat in the 2019-2020 agricultural year was defined with 

specific start and end dates. The Start of Season (SOS) was set as October 7, 2019, and the 

End of Season (EOS) as April 26, 2020. These dates were carefully selected to reflect the 

typical wheat cultivation cycle in the Gezira Scheme, accounting for local climatic condi-

tions and agricultural practices. 

Parameters used in the biomass and yield analyses for wheat were sourced from com-

prehensive literature reviews, ensuring they accurately represent the characteristics of wheat 

cultivation in the region. (Figure 14) shows crop coefficients (Kc) for wheat, while (Tables 

10,11) display all crop parameters and parameters used in the biomass and yield analyses of 

wheat, respectively. 

 

 
 

Figure 12.Land Cover Classification of Wheat 

 

Wheat 
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Figure 13. Scheme Boundary 

 
 

Figure 14. Crop Coefficients (Kc) of Wheat 
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Table 10. Crops Parameters- (FAO, 2020) 

 
Crop Harvest In-

dex 

Above-ground Over Total Bio-

mass 

Moisture Content Ra-

tio 

Cotton 0.20 0.80 0.15 

Barley 0.30 0.85 0.15 

Wheat 0.48 0.85 0.15 

Maize (grain) 0.35 0.93 0.26 

Sorghum 0.25 0.80 0.20 

Rice 0.43 0.75 0.15 

Tef 0.24 0.75 0.15 

Sugarcane (ra-

toon) 

1.00 1.00 0.70 

 

Table 11. Parameters Used in the Biomass and Yield Analyses of Wheat- (FAO, 

2020b) 
 

SOS: Start of season= (07/10/2019) AOI: above ground over total biomass= (0.85) 

EOS: End of season = (26/04/2020) MC: Moisture content ratio= (0.15) 

Average_Kc: crop factor = 0.85 CF: conversion factor = 1     

HI: harvest index= (0.36)  
 

Note: 

a) Harvest Index: The ratio of grain yield to total above-ground dry biomass at crop 

maturity (Unkovich et al., 2010). 

b)  Above-ground Over Total Biomass: The ratio of above-ground biomass (stems, 

leaves, and grain) to total plant biomass including roots (Mathew et al., 2017) . 

c) Moisture Content Ratio: The proportion of water in the harvested grain, typically 

expressed as a percentage of total grain weight (Brooker et al., 1992). 

d)  Conversion Factor (CF): A multiplier used to convert between different units of 

measurement or to adjust for specific crop characteristics. In the context of wheat yield 

calculations, it's often used to convert from fresh weight to dry weight or to standardize 

moisture content (Carr, 2013). 

WaPOR Data: The Water Productivity Open Access Portal (WaPOR) provided essen-

tial remote sensing data for our analysis of the Gezira Irrigation Scheme, as shown in Figure 
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10. We downloaded six key datasets: Evapotranspiration (ET), which represents total water 

consumed by crops and lost to the atmosphere; Transpiration (T), isolating water used spe-

cifically by plants; Net Primary Production (NPP), measuring biomass production; Land 

Cover Classification (LCC), categorizing land use types; Precipitation (PCP), offering infor-

mation on rainfall patterns; and Reference Evapotranspiration (RET), providing a standard-

ized measure of atmospheric evaporative demand. These high-resolution, spatially explicit 

datasets formed the foundation of our irrigation performance assessment, enabling a com-

prehensive analysis of wheat productivity and water use efficiency across the scheme. The 

integration of these diverse data layers allowed for a nuanced understanding of the agricul-

tural dynamics within the Gezira Irrigation Scheme, supporting evidence-based insights for 

improving water management and crop productivity. 

 

• Water Consumption and Irrigation Performance Calculations 

 

A. Water Consumption and Evapotranspiration 

 

❖ Evapotranspiration (ET): The combined process of water surface evaporation, soil 

moisture evaporation, and plant transpiration of water into the atmosphere (Allen et 

al., 1998b).  

❖ Reference Evapotranspiration (ETo): The rate of evapotranspiration from a hypo-

thetical reference crop with specific characteristics, assuming no water shortage (FAO, 

2006).  

❖ Crop Coefficient (Kc): A dimensionless factor, typically ranging from 0.1 to 1.2, 

used to estimate crop evapotranspiration (ETc) by multiplying it with the reference 

evapotranspiration (ETo) (Doorenbos & Pruitt, 1977).  

❖ Beneficial Fraction (BF): A measure of irrigation efficiency representing the ratio 

of water beneficially used by the crop to the total amount of water applied through 

irrigation. A higher BF indicates more efficient water use (Molden et al., 2010) 
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Figure 15. Evapotranspiration and the Water Cycle (Wikipedia) 

 

Seasonal Actual Evapotranspiration ETa,s = ∑SOS
EOS  ETa (8) 

 

Potential Evapotranspiration  ETc = ETo ∗ Kc (9) 

 

 

Where: 

         ETa,s = Actual evapotranspiration  

SOS = Start of season 

EOS = End of season 

ETo = Reference evapotranspiration  

Kc = Crop coefficient 

 

BF = Ta/ETa  (10) 

 

Where:  

BF = Beneficial Fraction  

Ta = Actual Transpiration 

 ETa = Actual Evapotranspiration 

 

B. Biomass and Yield Estimation 

 

https://en.wikipedia.org/wiki/Evapotranspiration
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Definitions (Molden et al., 2010): 

❖ Biomass: refers to the total mass of living organic matter in plants above the soil 

surface. For wheat, this includes stems, leaves, and grain. B is typically measured in 

tons per hectare (t/ha) and is an important indicator of crop growth, health, and poten-

tial yield. 

❖ Net Primary Production (NPP): is the rate at which all the plants in an ecosystem 

produce net useful chemical energy. It's a measure of the net amount of carbon dioxide 

taken in by vegetation and converted to biomass through photosynthesis, minus the 

amount of carbon dioxide released during plant respiration. 

❖ Yield: refers to the quantity of crops produced per unit of land area. 

 

  
 

Figure 16. Biomass and Yield (Reference) 

 

Biomass 𝐵 = AOT ⋅ 𝑓c ⋅
NPPs⋅22.222

(1−MC)
 (11) 

 

Yield = 𝐵 ⋅ HI 

 

(12) 

 

Where:  

AOT = Above-ground over total biomass ratio  

fc = Light use efficiency correction factor  

mc = Moisture content of fresh biomass 

HI = Harvest Index (Wheat = 0.84) 

Units: ton/ha 

https://www.glbrc.org/outreach/educational-materials/field-investigations-biomass-yield-and-root-growth-crops
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C. Water Productivity 

 

Definitions (D. Molden et al., 2010): 

❖ Crop Water Productivity is a measure of the yield or net income per unit of water 

used in evapotranspiration. In this context, it represents the efficiency of water use in 

wheat production, measured in kg/m³ (kilograms of wheat produced per cubic meter 

of water consumed). 

 

 

 

 
Figure 17. Water Productivity (FAO, 2020) 

 

WP =
𝑌

ETa,s
 )13) 

 

Where: 

B = the total above-ground biomass produced 

ETa,s = actual evapotranspiration 

Units: kg/m³ 

 

D. Irrigation Performance Indicators (Efficiency indicators) 

 

Definitions: 

❖ Equity: in irrigation systems refers to the degree to which water deliveries or crop 

water use are considered fair across all users or areas within the system. It is a crucial 
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indicator of irrigation performance and system management effectiveness (Molden 

and Gates, 1990). 

❖ Adequacy: is a critical efficiency indicator in irrigation systems, quantifying the 

extent to which crop water requirements are met. It is defined as the ratio of actual 

evapotranspiration (ETa) to potential evapotranspiration (ETp) over a growing season 

(Bastiaanssen and Bos, 1999). 

❖ Relative Water Deficit (RWD): is a crucial physiological indicator that quantifies 

the degree of water stress experienced by crops (Steduto et al., 2012). 

 

Equity =  CV(ETa) = (Standard Deviation of ETa / Mean ETa)  ∗  100 (14) 
 

Table 12. Performance Indicator Reference Range 
 

Performance Indicator  Reference Range  

         

     Equity 

▪ 0 < E < 10% Good 

▪ 10 < E < 25% Fair 

▪ E > 25% Poor performance  

 

Adequacy (A) =  Seasonal ETa /Seasonal ETp (15) 
 

Where: 

ETa represents the actual water consumed by crops through evapotranspiration. 

ETp represents the theoretical maximum water requirement under ideal conditions. 

Performance Indicator Reference Range: 

- 0.8 < A ≤ 1.0: Good performance / operational range 

- 0.68 < A ≤ 0.8: Acceptable range 

- A ≤ 0.68: Poor performance 

 

Relative Water Deficit (RWD) =  1 − (AETI / REF) (16) 
 

Where: 

AETI: Actual Evapotranspiration 

REF: Reference Evapotranspiration 
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E. Productivity Gaps 

 

 Productivity Gap is the difference between the target productivity and the actual 

productivity in areas where the actual productivity falls below the target. 

❖ Biomass Gap: The difference between the target biomass and the actual biomass in 

areas where the actual biomass is below the target. 

 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑔𝑎𝑝 =  Target Biomass − Actual Biomass 
 

(where Actual Biomass < Target Biomass) 

 

 
 
(17) 

❖ Biomass Water Productivity (WPb) Gap: The difference between the target bio-

mass water productivity and the actual biomass water productivity in areas where the 

actual WPb is below the target. 

 

 WPb Gap =   Target WPb −  Actual WPb  
 

                                            (where Actual WPb < Target WPb) 

 
(18) 

 

❖ Crop Yield Gap: The difference between the target crop yield and the actual crop 

yield in areas where the actual yield is below the target. 

 

 Yield Gap = Target Yield −   Actual Yield  
 

(where Actual Yield < Target Yield) 

 
(19) 

 

❖ Crop Water Productivity (WPy) Gap: The difference between the target crop water 

productivity and the actual crop water productivity in areas where the actual WPy is 

below the target. 

 

 WPy Gap  = Target WPy −   Actual WPy  
 

(where Actual WPy < Target WPy) 

 
(20) 

 

❖ Target Productivity: The productivity level set as a benchmark, typically the 95th 

percentile of the productivity distribution in a given area. 
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Target Biomass = Target WPy 95th percentile of Biomass distribution 

 Target Biomass WP =   95th percentile of Biomass WP distribution 

Target Yield = 95th percentile of Yield distribution 

Target Crop WP =  95th percentile of Crop WP distribution   

 

 
 
 
(21) 

❖ Bright Spots Identification: Areas where both biomass (or yield) and water 

productivity meet or exceed their respective target values (Nhemachena et al., 

2018),Criteria: 

 

  Bright Spot =  (Actual Biomass ≥  Target Biomass)AND (Actual WPb 

≥  Target WPb)  

 Or 

 Bright Spot =   (Actual Yield ≥  Target Yield)AND (Actual WPy ≥  Target WPy)    
 

 
 

(22) 

 

2.3.6. Predicting Wheat Yield and Water Productivity Using Machine Learning  

 

Machine learning is a subset of artificial intelligence that enables systems to learn and 

improve from experience without being explicitly programmed. These algorithms are de-

signed to identify patterns in data, make decisions, and predict outcomes with minimal hu-

man intervention. By leveraging their ability to process and analyze large volumes of com-

plex data, machine learning techniques have revolutionized various fields, including agri-

cultural applications such as crop yield estimation from remote sensing data (LeCun et al., 

2015). 
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Figure 18. The Nested Relationship of Artificial Intelligence, Machine Learning, and 

Deep Learning  (Bond et al., 2023) 
 

In this study, we employed a diverse array of advanced machine learning techniques 

to enhance both wheat yield and water productivity (WPy) estimation in the Gezira Irrigation 

Scheme. Our methodology encompassed seven distinct models, each applied to predict both 

yield and WPy. Linear Regression served as our baseline, offering a straightforward ap-

proach to understand linear relationships within our data. To capture more complex, non-

linear patterns, we implemented Random Forest, an ensemble method that excels in handling 

intricate feature interactions often present in agricultural datasets. Gradient Boosting and its 

optimized variant, XGBoost, were utilized for their ability to build strong predictive models 

through sequential learning, potentially uncovering subtle patterns in both yield and water 

productivity data. 

We further expanded our analytical toolkit with K-Nearest Neighbors (KNN), a non-

parametric method that bases predictions on the similarity between data points, allowing us 

to capture localized patterns in yield and WPy across the irrigation scheme. Decision Trees 

were employed to model hierarchical decision processes, providing interpretable insights 
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into the factors influencing both yield and water productivity. Lastly, we implemented the 

Bagging Regressor, an ensemble method that reduces variance by combining predictions 

from multiple models trained on subsets of our data, aiming to create more robust and gen-

eralizable predictions for both target variables. 

         By applying this comprehensive suite of machine learning algorithms to both yield and 

WPy prediction, our study aimed to not only achieve accurate estimations but also to gain 

deeper insights into the complex interplay of factors affecting wheat productivity and water 

use efficiency in the Gezira Irrigation Scheme. This dual-target approach allowed us to ex-

plore potential relationships between yield and water productivity, offering a more holistic 

view of wheat cultivation in the region. Our methodology reflects the multifaceted nature of 

modern agriculture and the potential of advanced analytics in enhancing our understanding 

and management of complex agricultural systems. 

 

a) Multisource Data Integration for Advanced Wheat Yield and Water Produc-

tivity Prediction in the Gezira Irrigation Scheme 

 

This study focused on a specific section of the Gezira Irrigation Scheme, carefully 

chosen to represent the diverse agricultural conditions of the region. Figure 19 in our project 

illustrates this selected area, providing essential spatial context for our analysis and high-

lighting the geographical scope of this thesis. 
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Figure 19. Study Area and Data Distribution in the Gezira Irrigation Scheme for 

Wheat Yield Prediction Model 
 

This study on wheat yield and water productivity prediction in the Gezira Irrigation 

Scheme utilized a comprehensive and multi-faceted approach to data collection and integra-

tion. The dataset comprised two primary sources, each contributing unique and essential in-

formation for robust model development and validation. 

         The foundation of our analysis was built upon data from the FAO's Water Productivity 

Open Access Portal (WaPOR). This valuable resource provided crucial agro-meteorological 

parameters including Actual Evapotranspiration and Interception (AETI, mm), Net Primary 

Production (NPP, kg/m²), Transpiration (T, mm), Adequacy (unitless ratio), Biomass Factor 

(BF, unitless), Above Ground Biomass (AGBM, ton/ha), and biomass Water Productivity 

(WPb, kg/m³). Additionally, WaPOR supplied an initial calculated yield estimate in tons per 

hectare (ton/ha) and Water Productivity (kg/m³). These parameters offered invaluable in-

sights into water utilization, biomass production, and overall crop health dynamics across 

our study area. (Table 14) presents a subset of the input parameters from the WaPOR Open 

Access Portal, illustrating the range and nature of these critical variables, each expressed in 

their respective units to provide a clear understanding of the scale and comparability of the 

data used in our analysis. 
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Table 13. Subset of the Input Parameters From (WaPOR) 
 

RET AETI NPP T Adequacy BF AGBM WPb Wpy NDVI 

1855.6 791.2 277.37 615 0.5 0.78 6.16 0.78 0.37 0.35 
1855.6 798.5 282.44 616.2 0.5 0.77 6.28 0.79 0.38 0.44 
1849.3 815.2 317.2 643.1 0.51 0.79 7.05 0.86 0.42 0.52 
1855.6 877.5 322.79 689.2 0.55 0.79 7.17 0.82 0.39 0.58 
1855.6 857.6 326.72 681.6 0.54 0.79 7.26 0.85 0.41 0.55 

 

To enhance our understanding of vegetation health and vigor, we utilized Google Earth 

Engine to derive key vegetation indices: the Normalized Difference Vegetation Index 

(NDVI), Enhanced Vegetation Index (EVI), and Structure Insensitive Pigment Index (SIPI). 

These unitless indices, ranging from (-1 to 1), provide crucial information about vegetation 

density, photosynthetic activity, and plant stress levels. Figure 20 illustrates the spatial dis-

tribution of these indices across our study area, while Table 15 presents a subset of the de-

rived parameters. Figure 3 displays maps of these input values, offering a visual representa-

tion of vegetation health variability across the Gezira Irrigation Scheme. This spatial analysis 

adds a vital geographic dimension to our study, highlighting areas of high productivity and 

potential concern, thus enriching our yield and water productivity prediction models. 

 

Table 14. Subset of the Input Parameters Values from Google Earth Engine 
 

NDVI EVI SIPI 

0.49 3.66 1.49 
0.58 3.76 1.32 
0.54 3.85 1.2 
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Figure 20. Maps of Input Parameters Values from Google Earth Engine 
 

b)Advanced Machine Learning Models for Wheat Yield and Water Productivity  

 

In preparation for model development and evaluation, we implemented a strategic data 

partitioning approach. From our collection of 97 farmer data points, we allocated 80 (ap-

proximately 83%) for model training. This substantial training set ensured our models were 

exposed to a wide range of agricultural scenarios and outcomes. The remaining 20 data 

points (about 17%) were reserved as an independent test set, crucial for unbiased evaluation 

of model performance on unseen data. 

         This study predicting wheat yield and water productivity in the Gezira Irrigation 

Scheme, we utilized seven diverse machine learning models. Each model analyzes our input 

features-including AETI, NPP, T, Adequacy, BF, AGBM, WPb, WPy, NDVI, EVI, and SIPI-

to forecast wheat yield (tons/ha) and water productivity (kg/m3). 

         Linear Regression: Linear regression is a statistical method that models the linear re-

lationship between a dependent variable and one or more independent variables(Montgom-

ery et al., 2021). It is used to predict the value of the dependent variable based on the inde-

pendent variables and to understand the nature of their relationship(Weisberg, 2005). 
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�̂� = 𝛽0 + 𝛽1(AETI) + 𝛽2(NPP) + ⋯ + 𝛽10(SIPI) (23) 
 

This model assumes a linear relationship between the input features and the target var-

iables. Each coefficient 𝛽 indicates the change in yield or water productivity for a one-unit 

change in the corresponding feature, holding other features constant. 𝛽0 is the intercept, rep-

resenting the predicted yield or water productivity when all features are zero. 

Random Forest: is an ensemble learning method that constructs multiple decision trees 

during training and outputs the average prediction of the individual trees for regression tasks 

or the mode of the classes for classification tasks (Breiman, 2001). This technique combines 

the concepts of bagging (bootstrap aggregating) and random feature selection to create a 

robust and accurate predictive model (Liaw, 2002). 

 

�̂� =
1

𝐵
∑  

𝐵

𝑖=1

𝑓𝑖(𝑥) 
 
(24) 

 

Where 𝐵 is the number of trees (set to 100 in our case), and 𝑓𝑖(𝑥) is the prediction 

from the 𝑖-th tree. Each tree is trained on a bootstrap sample of our 80 training points, con-

sidering a random subset of features at each split. This approach captures complex, non-

linear relationships among the agro-meteorological parameters and the target variables. 

Gradient Boosting: is a machine learning technique that produces a prediction model 

as an ensemble of weak prediction models, typically decision trees. It builds the model in a 

stage-wise manner, optimizing a differentiable loss function by iteratively adding weak 

learners that correct the residual errors of the previous stage(Friedman, 2001). This method 

is known for its high predictive accuracy and ability to handle complex, non-linear relation-

ships in data(Chen and Guestrin, 2016). 

 

𝐹(𝑥) = ∑  

𝑀

𝑖=1

𝛾𝑖ℎ𝑖(𝑥) 
 
(25) 

          

         Here, 𝑀 is the number of iterations, 𝛾𝑖 is the step length, and ℎ𝑖(𝑥) are weak learners 

(usually shallow decision trees). The model sequentially adds weak learners to minimize 

prediction error, capturing subtle patterns in our agricultural data that simpler models might 

overlook. 
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XGBoost (eXtreme Gradient Boosting): is an optimized distributed gradient boosting 

library designed for high efficiency, flexibility, and portability. It implements machine learn-

ing algorithms under the Gradient Boosting framework, providing a scalable, fast, and accu-

rate implementation of gradient boosted decision trees(Chen and Guestrin, 2016b).  

 

�̂�𝑖 = ∑  

𝑘

𝑓𝑘(𝑥𝑖)  where 𝑓𝑘 ∈ 𝐹  
(26) 

 

Here, 𝐹 represents the space of regression trees. XGBoost optimizes the learning pro-

cess, efficiently handling sparse data (which may occur in our vegetation indices) and em-

ploying regularization techniques to prevent overfitting. 

         K-Nearest Neighbors (KNN): is a non-parametric method used for classification and 

regression, where predictions are made based on the k closest training examples in the fea-

ture space. In this algorithm, an object is classified by a plurality vote of its neighbors, with 

the object being assigned to the class most common among its k nearest neighbors(Cover 

and Hart, 1967). For regression tasks, the output is the average of the values of the k nearest 

neighbors(Altman, 1992). KNN is known for its simplicity and effectiveness in various ma-

chine learning applications. 

 

�̂� =
1

𝑘
∑  

𝑘

𝑖=1

𝑦𝑖 
 
(26) 

          

This model predicts outcomes based on the average of the 𝑘 nearest neighbors in our 10di-

mensional feature space. It is particularly effective for capturing localized patterns, where 

similar agro-meteorological conditions may lead to comparable yields or water productivity. 

         Decision Trees: are hierarchical models that predict outcomes by making sequential 

decisions based on feature values(Breiman et al., 1984). They recursively split data using 

criteria like Information Gain or Gini Impurity, creating a tree-like structure of decision 

rules(Quinlan, 1986). This approach reveals key feature thresholds influencing the target 

variable, applicable to both classification and regression tasks. Decision Trees are valued for 

their interpretability and ability to capture non-linear relationships. 

         Bagging Regressor: is an ensemble meta-estimator that fits base regressors on random 

subsets of the original dataset and aggregates their predictions to form a final 
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prediction(Breiman, 1996). It reduces variance and helps to avoid overfitting by creating 

multiple subsets of the original data through bootstrap sampling, training a separate regressor 

on each subset, and then averaging the predictions. This technique is particularly effective 

when the base models are complex and tend to overfit, such as decision trees. 

 

�̂� =
1

𝐵
∑  

𝐵

𝑖=1

𝑓𝑖(𝑥) 
(27) 

 

Similar to Random Forest, this model can utilize various base estimators beyond deci-

sion trees. In our implementation, we employed 100 base estimators, each trained on a boot-

strap sample of our training data. This approach mitigates the influence of outliers or unusual 

data points in our agricultural dataset. 

         By employing these diverse models, we aim to capture a wide range of potential rela-

tionships between our agro-meteorological parameters and vegetation indices, ultimately en-

hancing our understanding of wheat yield and water productivity in the Gezira Irrigation 

Scheme. This comprehensive approach not only facilitates accurate predictions but also pro-

vides valuable insights into the complex dynamics of wheat cultivation in our study area. 

 

c) Methodology for Wheat Yield and WPy Prediction 

 

         This study employed a comprehensive machine learning approach to predict wheat 

yield and water productivity (WPy) in the Gezira Irrigation Scheme. We integrated data from 

the FAO's Water Productivity Open Access Portal (WaPOR) and Google Earth Engine, en-

compassing a range of agro-meteorological parameters and vegetation indices. Our dataset 

comprised 97 farmer data points, which were strategically partitioned into training (80 

points) and testing (20 points) sets. We implemented and compared seven diverse machine 

learning algorithms: Linear Regression, Random Forest, Gradient Boosting, XGBoost, K-

Nearest Neighbors (KNN), Decision Tree, and Bagging Regressor. Model performance was 

evaluated using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and the 

coefficient of determination (R-squared). This methodological framework aimed to capture 

the complex relationships between environmental factors and agricultural outcomes, provid-

ing insights into the dynamics of wheat cultivation in the study area. 
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Figure 21. Methodology for Wheat Yield and WPy Prediction Using Machine Learn-

ing



 
 

 
 

3.RESULT AND DISCUSSION 

 

3.1 Crop Classification Results for Elgabel Office 

 

The crop classification results for Elgabel Office are presented through a series of Ta-

bles measured in Hectares (feddans = 0.42 ha), Table 16 compares the wheat classification 

errors between our analysis and the HRC team's findings. Table 17 focus on other crops, 

including gardens, chickpea, cotton, and miscellaneous cultivations, showing their distribu-

tion and classification errors respectively. An overview of all cultivated lands in Elgabel is 

provided in Table 18 presents the overall errors in cultivated land classification when com-

pared to the HRC team's data. Finally, Figure 22 offers a comprehensive visual representa-

tion through maps depicting the spatial distribution of various crops across the Elgabel Of-

fice area. 

 

Table 15. Result of Wheat Crops in Elgabel Office 
 

Canal Cultivated Lands-Wheat (Area / Hectares) Errors Of Wheat Comparing HRC Team 
HRC (Hectares) RS (Hectares) 

Elwadi (R, L) Canal 377 372 -0.01 

Eltaamier canal 167 173 0.03 

Elgalaa Canal 44 46 0.05 

Elkaramah canal 75 76 0.02 
 

Table 16. Result of Gardens/Chickpea/Cotton/Crops in Elgabel Office 
 

Canal 
Cultivated Lands-Gardens/Chickpea/Cot-

ton/Other (Area / Hectares) Errors of Gardens/Chickpea/Cotton/Other Comparing 
HRC Team 

HRC (Hectares) RS (Hectares) 
Elwadi (R, L) 

Canal 89 87 0.02 

Eltaamier canal 68 59 -0.03 

Elgalaa Canal 50 44 0.02 
Elkaramah ca-

nal 130 123 -0.01 
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Table 17. Result of Elgabel Cultivated Lands 
 

Canal 
Elgabel Cultivated Lands (Area / Hec-

tares) Elgabel Errors of Cultivated Lands Comparing HRC 
Team 

HRC (Hectares) RS (Hectares) 
Elwadi (R, L) Ca-

nal 466 459 0 

Eltaamier canal 236 232 0.01 

Elgalaa Canal 94 89 0.04 

Elkaramah canal 205 198 -0.01 
 

  

 
Figure 22. Maps of Spatial Distribution of Crops in Elgabel Office 

 

The accuracy assessment for the Elgabel Office crop classification, based on a (267-

point) confusion matrix (Figure 23,24), The accuracy assessment for the Elgabel Office crop 

classification, comparing the Object-Based Image Analysis (OBIA) method and the Support 

Vector Machine (SVM) method, reveals high overall accuracy for both approaches, Wheat 

classification shows strong results for both methods, with OBIA achieving a user's accuracy 

of 0.98 and a producer's accuracy of 0.96, while SVM attained a perfect user's accuracy of 

1.00 and a producer's accuracy of 0.94. For new wheat, both methods performed similarly 

with a user's accuracy of 0.94, though SVM had a slightly higher producer's accuracy (1.00 

vs 0.99). 

Fallow land classification demonstrated perfect accuracy (1.00) for both methods, in-

dicating excellent discrimination of these areas. Cotton classification showed some variabil-

ity, with OBIA achieving a user's accuracy of 0.69 and a producer's accuracy of 0.92, while 

SVM showed a higher user's accuracy of 0.75 but a lower producer's accuracy of 0.89. 
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The overall classification accuracy, represented by the Kappa coefficient, is marginally 

higher for SVM (0.93) compared to OBIA (0.91). This suggests that both methods perform 

well in crop type mapping for the Elgabel Office area, with SVM having a slight edge in 

overall accuracy. The choice between methods may depend on specific priorities for mini-

mizing different types of classification errors for particular crop types. 

 

 

 
Figure 23. Accuracy Assessment for Legible Office Crop Classification (SVM) 

 

 

 
Figure 24.Accuracy Assessment for Elgabel Office Crop Classification (OBIA) 

 

3.2. Crop Classification Results for Elhoosh Office 

 

The crop classification results for Elhoosh Office are presented through a series of 

Tables. While Table 19 compares the wheat classification errors between our analysis and 
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the HRC team's findings. Table 20 focus on other crops, including gardens, chickpea, cotton, 

and miscellaneous cultivations, showing their distribution and classification errors respec-

tively when compared to the HRC team's data. An overview of all cultivated lands in Elhoosh 

is provided in Table 21 presenting the overall errors in cultivated land classification com-

pared to the HRC team's assessment. Finally, Figure 25 offers a comprehensive visual rep-

resentation through maps depicting the spatial distribution of various crops across the El-

hoosh Office area. 

 

Table 18. Result of Wheat Crops in Elhoosh Office 
 

Canal Cultivated Lands-Wheat (Area / Hectares) Errors Of Wheat Comparing HRC Team (%) 
HRC (Hectares) RS (Hectares) 

Elhoosh Canal 130 133 2% 

Osman Canal 104 105 3% 

Wadelmounier canal 66 68 2% 
 

Table 19.Result of Gardens/Chickpea/Cotton/Crops in Elhoosh Office 
 

Canal 
Cultivated Lands-Gardens/Chickpea/Cot-

ton/Other (Area / Hectares) Errors of Gardens/Chickpea/Cotton/Other Com-
paring HRC Team (%) 

HRC (Hectares) RS (Hectares) 
Elhoosh Ca-

nal 99 97 2% 

Osman Canal 130 135 5% 
Wadelmounie

r canal 76 73 3% 
 

Table 20.Result of Elhoosh Cultivated Lands 
 

Canal 

Elhoosh Cultivated Lands (Area / 
Hectares) Elhoosh Errors of Cultivated Lands Comparing HRC 

Team (%) 
HRC (Hectares) 

RS (Hec-
tares) 

Elhoosh Canal 229 231 2% 

Osman Canal 234 240 4% 
Wadelmounier ca-

nal 142 141 3% 
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Figure 25.Maps of Spatial Distribution of Crops in Elhoosh Office 
 

         Demonstrates exceptional performance based on (297-point) confusion matrix. The ac-

curacy assessment of multi-class crop classification for the Elhoosh Office demonstrates 

strong performance for both OBIA and SVM methods, with some notable variations across 

crop types. Wheat classification shows identical results for both methods, while new wheat 

classification reveals superior user's accuracy for SVM. Both approaches achieve perfect 

accuracy for fallow land and identical performance for cotton. OBIA outperforms SVM in 

chickpea classification, particularly in user's accuracy. Overall, SVM slightly edges out 

OBIA in terms of overall accuracy (0.91 vs 0.87) and Kappa coefficient (0.88 vs 0.82), indi-

cating marginally better general performance.  

 

 

 
Figure 26. Accuracy Assessment for Elhoosh Office Crop Classification (SVM) 
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Figure 27.Accuracy Assessment for Elhoosh Office Crop Classification (OBIA) 

 

3.3. Crop Classification Results for Wad Elbasir Office 

 

The crop classification results for Wad Elbashir Office are presented through a series 

of Tables. Table 22 depicts the distribution of wheat cultivation in Wad Elbashir, while Table 

22 compares the wheat classification errors between our analysis and the HRC team's find-

ings. Table 23 focus on other crops, including gardens, chickpea, cotton, and miscellaneous 

cultivations, showing their distribution and classification errors respectively when compared 

to the HRC team's data. An overview of all cultivated lands in Wad Elbashir is provided in 

Table 24 presenting the overall errors in cultivated land classification compared to the HRC 

team's assessment. Finally, Figure 40 offers a comprehensive visual representation through 

maps depicting the spatial distribution of various crops across the Wad Elbasir Office area. 

 

Table 21. Result of Wheat Crops in Wad Elbashir Office 
 

Canal Cultivated Lands-Wheat (Area / Hectares) Errors Of Wheat Comparing HRC Team (%) 
HRC (Hectares) RS (Hectares) 

Ganabiah_Kafe Canal 386 385 0% 

Shakaira Canal 366 370 0% 

Umtumoun Canal 221 231 5% 
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Table 22. Result of Gardens/Chickpea/Cotton/Crops in Wad Elbashir Office 
 

Canal 
Cultivated Lands-Gardens/Chickpea/Cot-

ton/Other (Area / Hectares) Errors of Gardens/Chickpea/Cotton/Other Com-
paring HRC Team (%) 

HRC (Hectares) RS (Hectares) 
Ganabiah_Kaf

e Canal 439 446 1% 

Shakaira Canal 489 444 -3% 
Umtumoun 

Canal 148 153 7% 
 

Table 23.Result of Wad Elbashir Cultivated Lands 
 

Canal 
Wad Elbashir Cultivated Lands (Area / 

Hectares) Wad Elbashir Errors of Cultivated Lands Comparing 
HRC Team (%) 

HRC (Hectares) RS (Hectares) 
Ganabiah_Kafe 

Canal 825 831 1% 

Shakaira Canal 856 814 -2% 
Umtumoun Ca-

nal 369 384 4% 
 

 
 

Figure 28. Maps of Spatial Distribution of Crops in Wad Elbasir Office 
 

          Demonstrates exceptional performance based on (243-point) confusion matrix, The 

accuracy assessment for the Wad Elbasir Office crop classification, as depicted in (Figure 

29,30) The accuracy assessment of multi-class crop classification for the Elgabel Office 

demonstrates strong performance for both Support Vector Machine (SVM) and Object-

Based Image Analysis (OBIA) methods, with some notable variations across crop types. 

Wheat classification shows higher user's accuracy for SVM (1.00) compared to OBIA (0.70), 

while OBIA has a slightly better producer's accuracy (0.81 vs 0.68). Both methods achieve 
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perfect accuracy for new wheat and fallow land classification. Cotton classification yields 

identical results for both approaches, with a user's accuracy of 0.80 and a producer's accuracy 

of 0.91. Chickpea classification shows the same user's accuracy (0.72) for both methods, but 

SVM demonstrates a higher producer's accuracy (1.00 vs 0.46). Overall, SVM slightly out-

performs OBIA in terms of overall accuracy (0.91 vs 0.86) and Kappa coefficient (0.88 vs 

0.83), indicating marginally better general performance. These results suggest that while 

both methods are effective for crop type mapping in the Elgabel Office area, SVM may have 

a slight edge, particularly in wheat and chickpea classification. The choice between methods 

may depend on specific crop priorities and the desired balance between user's and producer's 

accuracies for different crop types. 

 

 

 
Figure 29. Accuracy Assessment for Wad Elbasir Office Crop Classification (SVM) 

 

 
 

Figure 30.Accuracy Assessment for Wad Elbasir Office Crop Classification (OBIA) 
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3.4. Crop Classification Results for Gezira Scheme Divisions 

 

Due to the extensive area of the Gezira scheme, the project was divided into four main 

divisions to facilitate the classification process, The results of the Support Vector Machine 

(SVM) and Object-Based Image Analysis (OBIA) classifications, along with their averages, 

are as follows: 

 

Table 24. Crop Classification Results in Four Main Divisions of Scheme 
 

Crops Area for Divisions Parts  SVM 

(Hectares) 

OBIA 

(Hectares) 

West of Managil 

Wheat 74282.58012 
 

164323.200 

Gardens/Chickpea/Cotton/Other 59740.56984 
 

48631.09 
 

East Of Managil 

Wheat 59217.31998 
 

54947.662 
 

Gardens/Chickpea/Cotton/Other 51525.48996 

 

33588.077 

 
South of Gezira 

Wheat 31730.07012 29675.121 
 

Gardens/Chickpea/Cotton/Other 31107.60233 
 

23795.572 
 

North of Gezira 

Wheat 61850.05008 
 

63331.391 

 
Gardens/Chickpea/Cotton/Other 109171.75 

 

91004.149 

 
Total (SVM_Area) 

Wheat 227080.0203 

 
Gardens/Chickpea/Cotton/Other 251545.4121 
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North of Gezira Division 

 
 
 

East of Managil Division 

 
 

West of Managil Division 

 
 
 South of Gezira Division 

 
Figure 31. Maps of Spatial Distribution of Crops in Four Main Divisions of Scheme 
 

The accuracy assessment for crop classification across the four main divisions of the 

Gezira Scheme, as illustrated in (Figures 32,33,34,35,36,37,38,39) demonstrates consist-

ently high performance, West of Managil based on (385 points), East of Managil using (334 

points). North of Gezira based on (278 points). South Gezira used (250 points), After ana-

lyzing the performance of Object-Based Image Analysis (OBIA) and Support Vector Ma-

chine (SVM) methods across four distinct areas of the Gezira scheme - West of Managil, 

East of Managil, South of Gezira, and North of Gezira - the Support Vector Machine (SVM) 

method emerges as the superior choice for crop classification. SVM consistently demon-

strates higher overall accuracy and Kappa coefficients, indicating better reliability and agree-

ment across all regions. It particularly excels in wheat classification, a likely significant crop 

in the area, and shows more consistent performance across various crop types. While both 

methods exhibit strong accuracy in new wheat and fallow land classification, SVM often 
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maintains a slight advantage. For cotton and chickpea, SVM frequently outperforms OBIA 

in at least one accuracy measure. Although the performance differences between SVM and 

OBIA are sometimes minimal, SVM's consistent edge across all four areas of the Gezira 

scheme makes it the preferred method for crop classification in this region. However, it's 

important to note that both methods demonstrate high accuracy, and the final selection could 

be influenced by specific priorities for different crop types or areas within the scheme. Over-

all, SVM's superior performance and consistency make it the recommended method for com-

prehensive crop classification in the Gezira scheme. 

 

 

 
Figure 32.Accuracy Assessment for North of Gezira Division Crop Classification 

(SVM)  
 

 

 
Figure 33.Accuracy Assessment for North of Gezira Division Crop Classification 

(OBIA) 
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Figure 34.Accuracy Assessment for Weast of Managil Division Crop Classification 

(SVM) 
 

 

 
Figure 35.Accuracy Assessment for Weast of Managil Division Crop Classification 

(OBIA) 
 

 

 
Figure 36.Accuracy Assessment for East of Managil Division Crop Classification 

(SVM) 
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Figure 37.Accuracy Assessment for East of Managil Division Crop Classification 

(OBIA) 
 

 

 
Figure 38.Accuracy Assessment for South of Gezira Division Crop Classification 

(SVM) 
 



64 
 

 
 

 

 
Figure 39.Accuracy Assessment for South of Gezira Division Crop Classification 

(OBIA) 
 

3.5. Comprehensive Crop Area Estimation for The Gezira Scheme 

 

        This table presents a comprehensive crop area estimation for the Gezira Scheme, com-

paring official records with remote sensing (RS) estimates. It provides area measurements 

for wheat and other crops (including gardens, chickpea, cotton, and others) in hectares. The 

data includes error ranges calculated at both canal and block levels, offering insights into the 

accuracy of the remote sensing methodology compared to official figures. 

 

Table 25. Crop Area Estimation for the Gezira Scheme 
 

Crop Category Office Gezira 

(Hectares) 

RS Estimate 

(Hectares) 

Error Range 

(Canal)-

(from-to) 

Error Range 

(Block)- (from-

to) 

Error 

from 

Canals 

Error 

From 

Blocks 

Wheat 208,108.8 227,080.0203 
 

215,930.5 -

228,025.8 
 

217,719.6 - 

226,525.1 
 

3% 2% 

Gardens/Chick-

pea/Cotton/Other 

250,000.9 251,545.4121 
 

253,618.8 - 

270,469.4 
 

253,618.8 - 

270,469.4 

3% 3% 

Total Cultivated 

Lands 

458,062.5 484,304.2 472,066.7-

496,176.8 

475,423.2-

493,011.1 

3% 2% 
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Figure 40.Comparative Thematic Maps of Crop Classification in the Gezira Scheme 

Using (SVM) and (OBIA) Techniques 
 

3.6. Water Management Indicators 

 

3.6.1. Analysis of Actual Evapotranspiration (AETI) Distribution  

 
          The analysis of actual evapotranspiration (AETI) for wheat across the Gezira Scheme divisions 

during the 2019-2020 growing season revealed significant spatial variability. As depicted in Figure 

41, AETI rates exhibited a wide range, from a minimum of 743 mm/season in AbdelMagid Division 

to a maximum of 1023 mm/season in Alhaj Abdallah. Notably high AETI values were observed in 

Alhaj Abdallah (1023 mm/season), Albasatna (1011 mm/season), and Northwest Sennar (986 

mm/season), indicating areas of potentially higher water consumption or more intensive crop growth. 

In contrast, divisions such as AbdelMagid (743 mm/season) and Gaboga (787 mm/season) displayed 

markedly lower AETI rates, suggesting possible differences in irrigation practices, soil characteris-

tics, or local microclimates. 

The spatial distribution of AETI, illustrated in Figure 43, further elucidates this variability across the 

entire Gezira Scheme. The map reveals a pattern of higher evapotranspiration rates concentrated in 

the central and eastern regions of the scheme, corresponding to the peak values observed in the divi-

sional analysis. This spatial heterogeneity in AETI rates has important implications for water re-

source management and irrigation scheduling within the scheme. 



66 
 

 
 

To provide a more detailed perspective, Figure 42 presents a quantitative analysis of AETI patterns 

at the small-scale Hawasha level. This granular view allows for the identification of localized varia-

tions in evapotranspiration, which may be attributed to factors such as soil type, topography, or spe-

cific farm management practices. 

The comprehensive analysis of AETI distribution across multiple scales - from individual Hawash to 

scheme-wide divisions - offers valuable insights for optimizing water use efficiency and crop produc-

tivity in the Gezira Scheme. These findings can inform targeted interventions and precision agricul-

ture techniques to address areas of high-water consumption and improve overall scheme manage-

ment. 

 

 

 
Figure 41.Divisional Variations in Wheat Evapotranspiration Across the Gezira 

Scheme 

 

 

 
Figure 42.Quantitative Analysis of Wheat Crop Evapotranspiration Patterns Across 

Small Part (Hawasha) 
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Figure 43. Quantitative Analysis of Wheat Crop Evapotranspiration Patterns Across 

Gezira Scheme Divisions 

 

3.6.2. Reference - Evapotranspiration (RET) 

 

          The analysis of Reference Evapotranspiration (RET) across the Gezira Scheme revealed sig-

nificant spatial variability and a general increasing trend. As illustrated in Figure 45, the mean RET 

values fluctuated between approximately 1834 mm/season and 1920 mm/season across the various 

divisions. 

          Peak RET values were observed in AbdelMagid Division (approximately 1920 mm/season), 

followed closely by Altahameed and Kab Elgidad (both exceeding 1905 mm/season). In contrast, the 

lowest       RET values were recorded in divisions such as Almatore with values around 1835 mm/sea-

son. Figure 46 provides a comprehensive spatial representation of RET patterns across the entire 

Gezira Scheme, further elucidating the geographical distribution of evaporative demand. This map 

highlights zones of high and low RET, offering valuable insights for regional water management 

strategies. Figure 44 presents a quantitative analysis of RET patterns at the small-scale Hawasha 

level. 
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          This multi-scale analysis of RET distribution, from individual Hawash as to scheme-wide di-

visions, provides a comprehensive foundation for optimizing irrigation scheduling and improving 

water use efficiency across the Gezira Scheme. The findings can inform targeted interventions and 

adaptation strategies to address the varying evaporative demands across different spatial scales, ulti-

mately contributing to more sustainable and efficient agricultural practices in the region. 

 

 
 

Figure 44. Quantitative Analysis of Wheat Crop RET Patterns Across Small Part 

(Hawasha). 

 

 
 

Figure 45. Divisional Variations in Wheat RET Across the Gezira Scheme 
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Figure 46. Quantitative Analysis of Wheat Crop RET Patterns Across Gezira Scheme 

Divisions 

3.6.3. Beneficial Fraction 

 

The analysis of the Beneficial Fraction (BF) across the Gezira Scheme divisions re-

vealed subtle variations and a relatively stable trend. As depicted in Figure 47, the mean BF 

values ranged from approximately 0.80 to 0.83 across the various divisions, the highest BF 

value was observed in Alshawal Division, reaching nearly 0.83, followed closely by Gaboga 

and Almatore Divisions, both exceeding 0.81. Conversely, the lowest BF values were rec-

orded in divisions such as Almukhtarand and Almatore Divisions, with values around 0.80.  

Figure 49 provides a comprehensive spatial representation of BF patterns across the 

entire Gezira Scheme, further elucidating the geographical distribution of water use effi-

ciency. This map highlights zones of higher and lower BF, offering valuable insights for 

targeted irrigation management strategies, to provide a more detailed perspective, Figure 48 

presents a quantitative analysis of BF patterns at the Hawasha level. 
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The observed spatial patterns in BF values, although subtle, have important implica-

tions for irrigation management and water resource optimization within the Gezira Scheme. 

Divisions and areas with lower BF values may benefit from interventions to improve water 

use efficiency, while those with higher BF values could serve as models for best practices. 

This multi-scale analysis of BF distribution, from individual Hawash as to scheme-

wide divisions, provides a nuanced understanding of water use efficiency across the Gezira 

Scheme. The findings can inform targeted interventions and precision agriculture techniques 

to address areas of lower efficiency and replicate successful practices from high-performing 

regions. Ultimately, this analysis contributes to the development of more sustainable and 

water-efficient agricultural practices in the Gezira Scheme, balancing crop productivity with 

conservation of water resources. 

 

 
 

Figure 47. Divisional Variations in Wheat BF Across the Gezira Scheme 
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Figure 48. Quantitative Analysis of Wheat Crop BF Patterns Across Small Part (Ha-

washa). 

 

 
 

Figure 49. Quantitative Analysis of Wheat Crop BF Patterns Across Gezira Scheme 

Divisions 
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3.7 Productivity Indicators  

 

3.7.1.Net Primary Production (NPP) 

 

The analysis of Net Primary Production (NPP) across the Gezira Scheme divisions 

revealed significant spatial variability, indicating diverse levels of crop productivity. As il-

lustrated in Figure 50, the mean NPP values fluctuated substantially, ranging from approxi-

mately 297 gC/m2/season to 377 gC/m2/season across the various divisions. 

Peak NPP values were observed in Alfakhakheir and Shelei, both reaching nearly 377 

gC/m2/season, indicating areas of high wheat productivity. Conversely, the lowest NPP val-

ues were recorded in divisions such as AbdelMagidand Northwest Sennar, with values 

around 297 gC/m2/season. 

Figure 52 provides a comprehensive spatial representation of NPP patterns across the 

entire Gezira Scheme, further elucidating the geographical distribution of wheat productiv-

ity. This map highlights zones of high and low NPP, offering valuable insights for identifying 

areas of optimal and suboptimal crop performance, to provide a more granular perspective, 

Figure 51 presents a quantitative analysis of NPP patterns at the Hawasha level. 

The observed spatial heterogeneity in NPP values has significant implications for ag-

ricultural management and resource allocation within the Gezira Scheme. Divisions and ar-

eas with higher NPP values may serve as models for best practices, while those with lower 

NPP values might benefit from targeted interventions to improve crop productivity. 

 

 
 

Figure 50. Divisional Variations in Wheat NPP Across the Gezira Scheme 

280.00
290.00
300.00
310.00
320.00
330.00
340.00
350.00
360.00
370.00
380.00

[g
C

/m
2/

se
as

on
]

Divisions

Net Primary Production (NPP)



73 
 

 
 

 
 

Figure 51. Quantitative Analysis of Wheat Crop NPP Patterns Across Small Part (Ha-

washa). 
 

 
 

Figure 52. Quantitative Analysis of Wheat Crop NPP Patterns Across Gezira Scheme 

Divisions 
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3.7.2. Above Ground Biomass (AGB) 

 

         The analysis of Above Ground Biomass (AGB) across the Gezira Scheme divisions 

revealed notable spatial variability, indicating diverse levels of wheat biomass production. 

As illustrated in Figure 53, the mean AGB values fluctuated considerably, ranging from ap-

proximately 6.5 ton/ha/season to 8.5 ton/ha/season across the various divisions. 

         Peak AGB values were observed in Alfakhakheirand, Shelei and Wad Almansee Divi-

sions reaching nearly 8.5 ton/ha/season, indicating areas of high wheat biomass accumula-

tion. Conversely, the lowest AGB values were recorded in divisions such as Northwest Sen-

nar and AbdelMagid Divisions, with values around 6.5 ton/ha/season. The graph demon-

strates a non-uniform pattern across divisions, suggesting complex interactions of factors 

influencing biomass production. 

         Figure 55 provides a comprehensive spatial representation of AGB patterns across the 

entire Gezira Scheme, further elucidating the geographical distribution of wheat biomass 

production. This map highlights zones of high and low AGB, offering valuable insights for 

identifying areas of optimal and suboptimal crop performance in terms of vegetative growth, 

to provide a more granular perspective, Figure 54 presents a quantitative analysis of AGB 

patterns at the Hawasha level. 

         The observed spatial heterogeneity in AGB values has significant implications for ag-

ricultural management and resource allocation within the Gezira Scheme. Divisions and ar-

eas with higher AGB values may serve as models for best practices in crop management and 

biomass production, while those with lower AGB values might benefit from targeted inter-

ventions to improve overall crop vigor and productivity. 

         This multi-scale analysis of AGB distribution, from individual Hawash as to scheme-

wide divisions, provides a comprehensive foundation for optimizing agricultural practices 

and improving overall wheat biomass production across the Gezira Scheme. The findings 

can inform precision agriculture techniques, guide the implementation of site-specific man-

agement strategies, and support decision-making processes for resource allocation to en-

hance vegetative growth. 

         Furthermore, the variability in AGB across divisions underscores the importance of 

adaptive management approaches that consider local conditions and constraints. By lever-

aging these insights, stakeholders can develop tailored strategies to enhance wheat biomass 
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production, which is crucial for improving overall yield potential, ensuring food security, 

and promoting sustainable agricultural practices throughout the Gezira Scheme. 

 

 
 

Figure 53. Divisional Variations in Wheat AGB Across the Gezira Scheme 
 

 
 

Figure 54. Quantitative Analysis of Wheat Crop AGB Patterns Across Small Part 

(Hawasha). 
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Figure 55. Quantitative Analysis of Wheat Crop AGB Patterns Across Gezira Scheme 

Divisions 
 

3.7.3. Crop Yield 

 

The analysis of wheat crop yield across the Gezira Scheme divisions revealed signifi-

cant spatial variability, indicating diverse levels of productivity. As illustrated in Figure 56, 

the mean crop yield values fluctuated considerably, ranging from approximately 3.18 

ton/ha/season to 4.02 ton/ha/season across the various divisions. 
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Peak crop yield values were observed in Alfakhakheir and Shelei divisions, both reach-

ing nearly 4.02 ton/ha/season, indicating areas of high wheat productivity. Conversely, the 

lowest crop yield values were recorded in divisions such as Northwest Sennar and Wad Al-

nao, with values around 3.18 ton/ha/season. 

Figure 58 provides a comprehensive spatial representation of crop yield patterns across 

the entire Gezira Scheme, further elucidating the geographical distribution of wheat produc-

tivity. This map highlights zones of high and low crop yield, offering valuable insights for 

identifying areas of optimal and suboptimal crop performance, to provide a more granular 

perspective, Figure 57 presents a quantitative analysis of crop yield patterns at the Hawasha 

level. 

The observed spatial heterogeneity in crop yield values has significant implications for 

agricultural management and resource allocation within the Gezira Scheme. Divisions and 

areas with higher crop yield values may serve as models for best practices in wheat cultiva-

tion, while those with lower crop yield values might benefit from targeted interventions to 

improve overall productivity. 

Furthermore, the variability in crop yield across divisions underscores the importance 

of adaptive management approaches that consider local conditions and constraints. By lev-

eraging these insights, stakeholders can develop tailored strategies to enhance wheat produc-

tivity, which is crucial for improving food security, farmer livelihoods, and promoting sus-

tainable agricultural practices throughout the Gezira Scheme. The identification of high-

yielding areas can also provide valuable information for breeding programs and the devel-

opment of location-specific wheat varieties adapted to the diverse conditions within the 

scheme. 
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Figure 56. Divisional Variations in Wheat Crop Yield Across the Gezira Scheme 

 

 
 

Figure 57. Quantitative Analysis of Wheat Crop Yield Patterns Across Small Part 

(Hawasha). 
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Figure 58. Quantitative Analysis of Wheat Crop Yield Patterns Across Gezira 

Scheme Divisions 
 

3.7.4. Crop Water Productivity 

 

The analysis of Crop Water Productivity (WPy) for wheat across the Gezira Scheme 

divisions revealed notable spatial variability, indicating diverse levels of water use efficiency 

in crop production. As illustrated in Figure 59, the mean WPy values fluctuated significantly, 

ranging from approximately 0.32 kg/m³ to 0.45 kg/m³ across the various irrigation divisions. 

Peak WPy values were observed in Shelei, Alfakhakheir, and wad Almansee reaching 

nearly 0.45 kg/m³, indicating areas of high water use efficiency in wheat production. Con-

versely, the lowest WPy values were recorded in divisions such as Northwest Sennar and 

Alhaj Abdallah, with values around 0.32 kg/m³. The graph demonstrates a non-uniform pat-

tern across divisions, suggesting complex interactions of factors influencing water produc-

tivity in wheat cultivation. 
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Figure 61 provides a comprehensive spatial representation of WPy patterns across the 

entire Gezira Scheme, further elucidating the geographical distribution of water use effi-

ciency in wheat production. This map highlights zones of high and low WPy, offering valu-

able insights for identifying areas of optimal and suboptimal water management practices, 

to provide a more granular perspective, Figure 60 presents a quantitative analysis of WPy 

patterns at the Hawasha level. 

This multi-scale analysis of WPy distribution, from individual Hawash as to scheme-

wide divisions, provides a comprehensive foundation for optimizing irrigation practices and 

improving overall water productivity in wheat cultivation across the Gezira Scheme. The 

findings can inform precision irrigation techniques, guide the implementation of water-sav-

ing strategies, and support decision-making processes for water resource allocation to en-

hance both yield and water use efficiency. 

Furthermore, the variability in WPy across divisions underscores the importance of 

adaptive water management approaches that consider local conditions and constraints. By 

leveraging these insights, stakeholders can develop tailored strategies to enhance water 

productivity in wheat cultivation, which is crucial for improving food security, conserving 

water resources, and promoting sustainable agricultural practices throughout the Gezira 

Scheme. The identification of high WPy areas can also provide valuable information for 

developing and implementing water-efficient cultivation techniques and technologies suited 

to the diverse conditions within the scheme. 

 

 
 

Figure 59. Divisional Variations in Wheat WPy Across the Gezira Scheme 
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Figure 60. Quantitative Analysis of Wheat WPy Patterns Across Small Part (Ha-

washa). 

 

 
 

Figure 61. Quantitative Analysis of Wheat WPy Patterns Across Gezira Scheme Di-

visions 
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3.7.5. Crop Yield and WPy Analysis for Wheat in the Gezira Scheme 

 

The integrated analysis of crop yield and water productivity (WPy) for wheat in the 

Gezira Scheme during the 2019-2020 season reveals a complex interplay between produc-

tivity and water use efficiency. This comprehensive assessment provides crucial insights into 

the scheme's performance and highlights areas for potential improvement. 

The study targeted a yield of 4.7 t/ha and a water productivity of 0.58 kg/m³, as out-

lined in Tables 27. However, actual performance consistently fell short of these targets across 

all irrigation divisions, indicating systemic challenges within the scheme. The relationship 

between yield and WPy, visualized in Figure 62, demonstrates a positive correlation, sug-

gesting that improvements in one metric could potentially lead to enhancements in the other. 

Spatial variability is a key feature of the scheme's performance. Figure 64 illustrates 

the range of WPy values across different irrigation divisions, spanning from 0.32 to 0.45 

kg/m³. High-performing divisions such as Alfakhakheir, Shelei, and Almatore achieved WPy 

values around 0.45 kg/m³, while divisions like Northwest Sennar and Alhaj Abdallah lagged 

behind with values around 0.32-0.33 kg/m³, Figure 63. Similarly, yield variations were ob-

served, with top-performing divisions reaching approximately 4.0 t/ha, still below the target 

of 4.7 t/ha. 

The mean WPy of 0.41 kg/m³ and the average yield of about 3.6 t/ha across all divi-

sions underscore the significant gap between current performance and the set targets. This 

disparity highlights the need for targeted interventions and strategic improvements through-

out the scheme. 

 

Table 26. Target Yield and Target WP 
 

Season Target Yield [t/ha] Target WP [Kg/m3]  

2019-10-07 to 2020-04-26  4.7 0.58  

 



83 
 

 
 

 
 

Figure 62. Relationship Between Yield and Water Productivity 
 

 
 

Figure 63. Target Yield Vs. Actual Yield 
 

 
 

Figure 64.Target WPy vs. Actual WPy 
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3.8. Efficiency Indicators 

 

3.8.1. Equity Analysis for Wheat Crop in the Gezira Scheme 

 

         The equity analysis of water distribution for wheat cultivation in the Gezira Scheme 

reveals significant insights into irrigation efficiency across different divisions. As illustrated 

in Figure 65, equity values predominantly fall within the "fair uniformity" range (10% < E 

< 25%), indicating moderate consistency in water distribution throughout the scheme. How-

ever, notable variations exist, with equity values fluctuating between approximately 10% 

and 20% across divisions. High-performing areas such as AlturabI and Abdelmagid approach 

the upper limit of fair uniformity, while divisions like Northwest Sennar and Almukhtar 

demonstrate lower equity values, nearing the threshold of good uniformity (E < 10%), 

though local variations overshadow this general pattern. Importantly, no division achieves 

"good uniformity" status, suggesting a systemic opportunity for improvement. The absence 

of widespread poor performance (E > 25%) indicates that severe water distribution issues 

are not pervasive but may occur in isolated instances. This comprehensive analysis under-

scores the need for targeted interventions to enhance water distribution practices, particularly 

in lower-performing divisions. By addressing these equity disparities through improved in-

frastructure, advanced irrigation technologies, and enhanced management practices, the Ge-

zira Scheme can potentially optimize water use efficiency, leading to improved crop yields 

and overall agricultural sustainability in the region. 

 

 
 

Figure 65. Divisional Variations in Wheat Equity Across the Gezira Scheme 
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Figure 66. Quantitative Analysis of Wheat WPy Patterns Across Gezira Scheme Di-

visions 
 

3.8.2. Adequacy Analysis for Wheat Crop in the Gezira Scheme 

 

The adequacy analysis of water supply for wheat cultivation in the Gezira Scheme 

reveals critical insights into irrigation effectiveness across divisions. As illustrated in Figure 

67, adequacy values predominantly fall within the poor performance range (A ≤ 0.68), indi-

cating a systemic undersupply of water relative to crop requirements. Values fluctuate be-

tween 0.47 and 0.64, with no division reaching the acceptable (0.68 < A ≤ 0.8) or good per-

formance (0.8 < A ≤ 1) ranges. Alhaj Abdallah and Albasatna demonstrate the highest ade-

quacy at 0.64, while AbdelMagid shows the lowest at 0.47. The majority of divisions cluster 

between 0.50 and 0.60, consistently within the poor performance category. This pervasive 



86 
 

 
 

inadequacy in water supply suggests widespread water stress for wheat cultivation, poten-

tially impacting crop yields and overall agricultural productivity across the scheme. The 

analysis underscores the urgent need for comprehensive water management improvements, 

including infrastructure enhancements, adoption of water-saving technologies, and imple-

mentation of precision irrigation techniques. Addressing these adequacy challenges is crucial 

for enhancing wheat productivity, optimizing resource utilization, and building resilience to 

water scarcity in the Gezira Scheme. 

 

 

 
 

Figure 67. Divisional Variations in Wheat Adequacy Across the Gezira Scheme 
 

 

 
 

Figure 68. Quantitative Analysis of Wheat Adequacy Patterns Across Small Part (Ha-

washa). 
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Figure 69. Quantitative Analysis of Wheat Adequacy Patterns Across Gezira Scheme 

Divisions 
 

3.8.3. Efficiency Indicators: Relative Water Deficit (RWD) Analysis 

 

The Relative Water Deficit (RWD) analysis for wheat cultivation across the Gezira 

Scheme, as illustrated in Figure 70, reveals significant variations in water stress levels among 
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different irrigation divisions. RWD values range from approximately 0.45 to 0.61, indicating 

moderate to severe water deficits throughout the scheme. The highest RWD values, observed 

in divisions such as AbdelMagid and Alshawal (reaching about 0.61), suggest areas experi-

encing the most severe water stress. Conversely, divisions like Alhaj Abdallah and Alshawal 

exhibit the lowest RWD values (around 0.45), indicating relatively better water availability, 

although still deficient. The graph demonstrates a non-uniform pattern across divisions, with 

notable fluctuations between adjacent areas, highlighting localized differences in water man-

agement or environmental conditions.  

Critically, the analysis reveals that the Relative Water Deficit for the entire Gezira 

Scheme in the 2019/2020 season was 27%, meaning that crops in the scheme received only 

73% of their optimal water requirements. This scheme-wide deficit underscores the severity 

of the water stress issue, indicating a substantial shortfall in meeting crop water needs across 

the entire agricultural system. 

This comprehensive analysis, supported by the spatial patterns shown in Figure 71, 

underscores the widespread challenge of water deficits in the Gezira Scheme. The consistent 

presence of significant RWD values across all divisions, coupled with the overall 27% defi-

cit, indicates a systemic issue in meeting crop water requirements, likely impacting wheat 

yields and overall agricultural productivity. These findings emphasize the urgent need for 

targeted interventions to improve water use efficiency, enhance irrigation infrastructure, and 

implement drought-resistant cultivation practices across the scheme. Addressing this sub-

stantial water deficit is crucial for mitigating the effects of water stress and optimizing wheat 

production in the face of limited water resources, with potential implications for food secu-

rity and agricultural sustainability in the region. 
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Figure 70. Divisional Variations in Wheat RWD Across the Gezira Scheme 
 

 
 

Figure 71. Quantitative Analysis of Wheat RWD Patterns Across Gezira Scheme Di-

visions 
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3.9. Gaps Analysis 

 

3.9.1. Analysis of Above Ground Biomass Production and Biomass Gaps  

 

The analysis of Above Ground Biomass (AGB) production and Biomass Gaps for 

wheat cultivation across the Gezira Scheme's irrigation divisions reveals significant varia-

bility in crop performance. AGB production ranged from 6.62 to 8.38 t/ha, with a mean of 

7.44 t/ha, while Biomass Gaps varied from 1.69 to 3.18 t/ha, averaging 2.45 t/ha. The highest 

AGB production was observed in Alfakhakheir (8.38 t/ha), Shelei (8.31 t/ha), and Wad Al-

mansee (8.20 t/ha), corresponding to the smallest Biomass Gaps. Conversely, Northwest 

Sennar, AbdelMagid, and Gaboga showed the lowest AGB production and largest Biomass 

Gaps. A strong negative correlation (r = -0.99) between AGB and Biomass Gaps indicates 

that divisions with higher biomass production consistently show smaller biomass gaps. The 

spatial variability in both metrics suggests the influence of localized factors on wheat bio-

mass production. Performance categorization showed 20% of divisions in high performance 

(AGB > 8 t/ha), 55% in moderate performance (7-8 t/ha), and 25% in low performance (AGB 

< 7 t/ha), highlighting areas for potential improvement in the scheme's wheat cultivation 

practices. 

This analysis reveals significant variability in Above Ground Biomass production and 

Biomass Gaps across the Gezira Scheme's irrigation divisions. The strong negative correla-

tion between AGB and Biomass Gaps underscores the importance of optimizing biomass 

production to minimize yield shortfalls. Targeted interventions based on the identified per-

formance categories can help improve overall wheat productivity in the scheme. Further re-

search into the specific factors driving high performance in certain divisions will be crucial 

for developing comprehensive strategies to enhance biomass production and reduce gaps 

across the entire Gezira Scheme. 
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Figure 72. Provides A Comprehensive Visual Analysis of The Relationships Between 

Above Ground Biomass (AGB), Biomass Gaps, And Yield Across Different Divisions in 

The Gezira Scheme. 
 

Table 27. Analysis of AGB, Biomass Gaps, and Yield: Key Observations and Impli-

cations 
 

Chart Type Key Observations Implications 
Scatter Plot Strong negative correlation between 

AGB and Biomass Gaps. - Higher 

AGB associated with higher Yield 

Increasing AGB likely leads to reduced 

Biomass Gaps and improved Yield. Fo-

cus on strategies to enhance AGB to po-

tentially improve overall productivity. 
Correlation Heatmap -Strong positive correlation: AGB and 

Yield. - Strong negative correlation: 

Biomass Gaps with AGB and Yield 

Confirms the interrelationships observed 

in the scatter plot. Reducing Biomass 

Gaps may be a key driver for increasing 

both AGB and Yield. 
Parallel Coordinate 

Plot 
- Divisions with high AGB tend to 

have low Biomass Gaps and high 

Yield. - Signific 

 

variability across di-

visions 
Identifies high-performing divisions, 

which can serve as benchmarks. Sug-

gests potential for improvement in 

other divisions by adopting practices 

from top performers. 

 

Boxplots - AGB: Highest median, widest range. 

- Yield: Smallest range. - Biomass 

Gaps: Considerable variation 

Indicates consistency in Yield despite 

variations in AGB and Biomass Gaps. 

This suggests potential for optimization 

– achieving high Yield even with moder-

ate AGB. 
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Figure 73. Divisional Variations in Wheat AGB-Gaps Across the Gezira Scheme 

 

 
 

Figure 74. Quantitative Analysis of Wheat AGB-Gaps Patterns Across Small Part 

(Hawasha). 
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Figure 75. Quantitative Analysis of Wheat AGB-Gaps Patterns Across Gezira 

Scheme Divisions 
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3.9.2 Analysis of Wheat Yield Production and Yield Gaps  

 

The analysis of wheat yield production and yield gaps across the Gezira Scheme's ir-

rigation divisions reveals significant insights into agricultural efficiency. As illustrated in 

Figures 83, 84, and 85, yield production ranged from 3.18 t/ha (Northwest Sennar) to 4.02 

t/ha (Alfakhakheir), with a mean of 3.57 t/ha. Correspondingly, yield gaps varied from 0.81 

t/ha (Alfakhakheir) to 1.52 t/ha (Northwest Sennar), averaging 1.18 t/ha. Figure 76 clearly 

demonstrates the inverse relationship between yield production and yield gaps, with high-

performing divisions like Alfakhakheir, Shelei, and Wad Almansee showing higher yields 

and smaller gaps. Figure 77 provides a comprehensive visual analysis of these relationships 

across divisions, while Figure 78 displays the spatial distribution of yield gaps throughout 

the scheme. This spatial variability in yield gaps, ranging from 0.68 to 0.83 in efficiency 

ratio, indicates significant potential for improvement even in the best-performing areas. The 

consistent presence of yield gaps across all divisions underscores the opportunity for en-

hancing wheat production efficiency through targeted interventions, particularly in lower-

performing areas of the Gezira Scheme. 

 

 
 

Figure 76. Divisional Variations in Wheat Yield Production and Yield-Gaps Across 

the Gezira Scheme 
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Figure 77. Provides A Comprehensive Visual Analysis of The Relationships Between 

Yield, Yield Gaps, Across Different Divisions in The Gezira Scheme 
 

 
 

Figure 78. Quantitative Analysis of Wheat Yield-Gaps Patterns Across Small Part 

(Hawasha). 
 

3.9.3.  Analysis of Wheat Water Productivity (Wpy) and Water Productivity 

Gaps  

 

The analysis of Wheat Water Productivity (WPy) and Water Productivity Gaps (WPy-

Gaps) across the Gezira Scheme's irrigation divisions reveals significant insights into water 

use efficiency. As illustrated in Figures 79, WPy ranged from 0.32 kg/m³ (Northwest Sennar) 
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to 0.45 kg/m³ (Alfakhakheir, Wad Almansee, Altahameed, Kab Elgidad), with a mean of 0.40 

kg/m³. Correspondingly, WPy-Gaps varied from 0.26 kg/m³ (Almatore) to 0.50 kg/m³ 

(Northwest Sennar), averaging 0.35 kg/m³. Figure 79 clearly demonstrates the inverse rela-

tionship between WPy and WPy-Gaps, with high-performing divisions showing higher wa-

ter productivity and smaller gaps. Figure 80 Quantitative Analysis of Wheat WPy-Gaps Pat-

terns Across Small Part (Hawasha), highlighting areas of inefficiency. The efficiency ratio, 

ranging from 0.39 to 0.63 across divisions, indicates significant potential for improvement 

even in the best-performing areas. This variability in water productivity and persistent gaps 

across all divisions underscores the opportunity for enhancing water use efficiency in wheat 

production through targeted interventions, particularly in lower-performing areas of the Ge-

zira Scheme. 

 

 
 

Figure 79. Provides Comprehensive Visual Analysis of The Relationships Between 

Wpy, Wpy-Gaps, Across Different Divisions in The Gezira Scheme 
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Figure 80. Quantitative Analysis of Wheat WPy-Gaps Patterns Across Small Part 

(Hawasha). 
 

3.10. Bright Spots Analysis 

 

The Bright Spots analysis for the Gezira Scheme, based on remote sensing data from 

October 7, 2019, to April 26, 2020, revealed significant insights into high-performing areas 

of wheat cultivation. The study focused on Above Ground Biomass (AGBM) and Water 

Productivity (WPy) as key indicators. AGBM values ranged from 2.03 to 12.48 t/ha, with a 

mean of 7.60 t/ha, while WPy varied from 0.26 to 1.06 kg/m³, averaging 0.42 kg/m³. Using 

the 95th percentile as a threshold (9.73 t/ha for AGBM and 0.536 kg/m³ for WPy), bright 

spots were identified as areas exceeding both thresholds simultaneously. Figure 81 illustrates 

the spatial distribution of these bright spots, highlighting regions of exceptional performance 

in both biomass production and water use efficiency. These areas represent the scheme's 

most productive and efficient wheat cultivation zones, offering valuable insights for potential 

replication of successful practices across the Gezira Scheme. 
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Figure 81. Spatial Distribution of Bright Spot Analysis  
 

3.11. Comparative Analysis of Wheat Yield and Water Productivity  

 

The analysis of wheat production efficiency in the Gezira Scheme reveals significant 

disparities across different zones, as illustrated in Figure 82. The Managil Zone demonstrates 

moderate yield performance (4-5 t/ha) but falls short of the optimal range (6-9 t/ha), with 

water productivity at approximately 0.55 kg/m³, less than 50% of optimal efficiency. In con-

trast, the South and North Gezira Zones show critical underperformance, with yields mostly 

below 3.5 t/ha and water productivity under 0.4 kg/m³. These findings highlight substantial 

yield gaps of 1-5 t/ha and water productivity deficits across all zones, with the South and 

North Gezira Zones showing particularly acute inefficiencies. The stark differences between 

zones underscore the need for targeted, zone-specific interventions to improve yield and wa-

ter use efficiency. This comprehensive analysis emphasizes the urgent requirement for sys-

tematic enhancements in wheat cultivation practices, irrigation systems, and water manage-

ment strategies throughout the Gezira Scheme to approach optimal production levels and 

resource efficiency. 

 



99 
 

 
 

 

 

 

Figure 82. Comparative Analysis of Wheat Yield and Water Productivity in Gezira 

Scheme 
 

3.12. Comparative Analysis of Real and WaPOR Productivity Yield  

 

The comparative analysis of real productivity yield and WaPOR-calculated productiv-

ity for wheat cultivation in the Gezira Scheme reveals significant insights. A moderate pos-

itive correlation (R = 0.52, p = 5.5e-05) exists between farmer-reported yields and WaPOR 

estimates, indicating a relationship but also notable discrepancies. Real productivity shows 

a wider distribution (approximately 5-30 sacks/ha) compared to the narrower, peaked distri-

bution of calculated productivity (centered around 15-17 sacks/ha). The analysis indicates 

that WaPOR generally underestimates productivity, particularly for high-yielding farms, 

with real productivity consistently exceeding calculated values for most farmers. WaPOR 

estimates align better with real productivity in the mid-range (10-20 sacks/ha) but show lim-

itations in accurately capturing very low (<10 sacks/ha) and very high (>25 sacks/ha) 

productivities. This systematic bias suggests a need for refined calibration of the WaPOR 

model. The findings highlight both the potential and limitations of using remote sensing for 

wheat productivity estimation, emphasizing the importance of integrating ground-truth data 

for more accurate agricultural monitoring and management in the Gezira Scheme. 
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Figure 83. Comparison of Real Yield with Calculated 

 

 
 

Figure 84. Comparative Analysis of Real Productivity Yield and WaPOR-Calculated 

Productivity in Wheat Cultivation 
 

3.13 Questionnaire-Based Analysis of Wheat Cultivation Practices 

 

The questionnaire-based analysis of wheat cultivation practices in the Gezira Scheme 

provides crucial ground-truth data to complement the remote sensing analysis. The survey, 

conducted with 182 wheat farmers from areas identified as 'bright spots', covered a com-

prehensive range of farming practices. Yields were classified as high (≥ 16 sacks/feddan) 

or low (≤ 15 sacks/feddan) to identify practices associated with higher productivity. The 

survey encompassed various aspects including seed selection, land preparation, fertilizer 

usage, pest management, and irrigation practices. Table 29 summarizes the suitable 
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practices identified through this analysis. This integrated approach, combining remote 

sensing data with farmer-reported practices, offers valuable insights for improving water 

use efficiency and overall wheat production in the Gezira Scheme. The findings from this 

survey provide a more nuanced understanding of the factors influencing wheat productiv-

ity, enabling the development of targeted strategies to enhance agricultural practices across 

the scheme. 

 

Table 28. suitable practices 
 

No. Activity Suitable Practice 

1 Seed rate 60 - 70 kg / Feddan 

2 Seed preparation It should be done according to the ag-

ricultural inspector or use the ready 

prepared type 
4 Land preparation Plough 3-4 times according to the 

rain, leveling 1-2 times 
5 Sowing Date 10th – 20th of November 

6 First irrigation 10th – 25th of November 

7 Second irrigation Should not be after the end of Decem-

ber 
8 Irrigation intervals 12 - 15 days 

9 Irrigation time 12 hours 

10 Chemical Fertilizers Dap 60 - 80 kg/feddan – urea 100 - 

150kg / feddan 
11 Weeds control Used when its need it 

12 Pests control Used when its need it (Jet spray is 

enough) 
13 Number of Irrigations during the 

season 
7 – 8 times 

14 Organic Fertilizers Not significant 

 

 3.14. Results Of Machine Learning Models  

 

This study employed seven machine learning models to predict wheat yield and water 

productivity (WPy) in the Gezira Irrigation Scheme. We evaluated model performance using 
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Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and the coefficient of de-

termination (R-squared). Table 3 presents a comprehensive overview of these performance 

metrics for each model. 

 

Table 29. Performance metrics of machine learning models for wheat yield and WPy 

estimation in the Gezira Irrigation Scheme 
 

Target Model MAE RMSE R-squared 

Yield Linear Regression 0.245 0.322 0.708 
Yield Random Forest 0.167 0.228 0.854 
Yield Gradient Boosting 0.177 0.244 0.832 
Yield XGBoost 0.170 0.245 0.831 
Yield KNN 0.236 0.290 0.763 
Yield Decision Tree 0.170 0.223 0.860 
Yield Bagging Regressor 0.163 0.226 0.857 
Wpy Linear Regression 0.003 0.003 0.999 
Wpy Random Forest 0.006 0.007 0.996 
Wpy Gradient Boosting 0.004 0.008 0.995 
Wpy XGBoost 0.004 0.007 0.996 
Wpy KNN 0.018 0.026 0.945 
Wpy Decision Tree 0.010 0.013 0.986 
Wpy Bagging Regressor 0.005 0.007 0.996 

 

For wheat yield prediction, ensemble methods demonstrated superior performance. 

The Decision Tree model achieved the highest accuracy with an R-squared value of 0.860 

and the lowest RMSE of 0.223. The Bagging Regressor and Random Forest models followed 

closely, with R-squared values of 0.857 and 0.854, respectively. The Bagging Regressor 

showed the lowest MAE (0.163), indicating high overall prediction accuracy. Gradient 

Boosting and XGBoost models performed similarly (R-squared: 0.832 and 0.831), highlight-

ing the effectiveness of boosting techniques. The Linear Regression model (R-squared: 

0.708) and K-Nearest Neighbors (KNN) model (R-squared: 0.763) showed moderate perfor-

mance, suggesting the complex, non-linear nature of factors influencing crop yield. 

In contrast, water productivity (WPy) predictions exhibited remarkably high accuracy 

across all models. Surprisingly, the Linear Regression model outperformed others, achieving 

an almost perfect R-squared of 0.999 and the lowest MAE and RMSE (both 0.003). This 

suggests a strong linear relationship between input features and WPy. Ensemble methods 

(Random Forest, Gradient Boosting, XGBoost, and Bagging Regressor) all performed ex-

ceptionally well, with R-squared values of 0.996 or higher. Even the Decision Tree model 
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achieved a high R-squared of 0.986. The KNN model, while still highly accurate, showed 

the lowest performance for WPy prediction (R-squared: 0.945). 

These results underscore the effectiveness of machine learning approaches in predict-

ing both wheat yield and water productivity in our study area. The superior performance of 

ensemble methods for yield prediction highlights the complex interactions between agricul-

tural variables affecting crop yield. Conversely, the high accuracy of simpler models for 

WPy prediction suggests a more direct relationship between input features and water produc-

tivity. This performance disparity between yield and WPy predictions offers valuable in-

sights into the underlying dynamics of wheat cultivation in the Gezira Irrigation Scheme, 

warranting further investigation into the factors influencing these two crucial agricultural 

metrics. 

Figure 85 showcases a user interface for an advanced "Wheat Yield and Water Produc-

tivity Prediction" tool, designed to assist agricultural professionals and researchers in esti-

mating wheat yields. The tool incorporates a range of critical input parameters, including 

Reference Evapotranspiration (RET), Actual Evapotranspiration Index (AETI), Net Primary 

Productivity (NPP), and various vegetation indices such as NDVI, EVI, and SIPI. What 

makes this tool particularly powerful is its integration of multiple machines learning models, 

offering users the flexibility to choose from Linear Regression, Random Forest, Gradient 

Boosting, XGBoost, K-Nearest Neighbors (KNN), Decision Tree, and Bagging Regressor 

algorithms. This variety allows users to compare different modeling approaches and select 

the one that best fits their data and prediction needs. The interface also provides additional 

features like parameter explanations, model saving and loading capabilities, and multiple 

analysis tabs for performance visualization, correlation heatmaps, and feature importance 

assessments. By combining diverse input parameters with a suite of advanced predictive 

models, this tool offers a comprehensive approach to analyzing factors influencing wheat 

yield, making it an invaluable resource for crop yield forecasting, agricultural planning, and 

research in crop science and water resource management. 
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Figure 85.Wheat Yield and Water Productivity Prediction Tool 
 

         3.15. Discussion 

 

This study provides a comprehensive analysis of wheat productivity in the Gezira 

Scheme, integrating remote sensing data with ground-level survey information to offer in-

sights into the complex interplay of factors affecting crop yields and water use efficiency. 

The findings reveal significant spatial variability in productivity across the scheme and high-

light critical areas for improvement in agricultural practices. 

 

3.15.1. Spatial Variability and Performance Gaps 

 

The analysis of Above Ground Biomass (AGB) and Water Productivity (WPy) across 

different divisions of the Gezira Scheme revealed substantial spatial heterogeneity in wheat 

production efficiency. The observed range of AGB (6.62 to 8.38 t/ha) and WPy (0.32 to 0.45 

kg/m³) indicates that while some areas are performing relatively well, there is significant 

room for improvement across the scheme. The inverse relationship between yield and yield 

gaps (ranging from 0.81 to 1.52 t/ha) further underscores the potential for increasing produc-

tivity through targeted interventions. 
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The identification of 'bright spots' - areas exceeding the 95th percentile in both AGB 

and WPy - provides valuable benchmarks for achievable productivity levels within the local 

context. These high-performing areas, predominantly found in divisions like alfakhakheir, 

shelei, and wad almansee, offer opportunities for peer-to-peer learning and the dissemination 

of best practices across the scheme. 

 

3.15.2. Water Management and Efficiency 

 

The analysis of water-related indicators, including Actual Evapotranspiration (AETI), 

Reference Evapotranspiration (RET), and Beneficial Fraction (BF), reveals critical insights  

into water management efficiency across the scheme. The observed AETI gradient, 

ranging from 607 to 824 mm/season, suggests significant variations in water consumption 

that are not always aligned with productivity outcomes. This misalignment is further evi-

denced by the consistently low adequacy values (ranging from 0.47 to 0.64) across all divi-

sions, indicating widespread water stress in wheat crops. 

The Relative Water Deficit (RWD) analysis, showing a scheme-wide average of 27%, 

further corroborates the challenges in meeting crop water requirements. These findings col-

lectively point to the urgent need for improved irrigation scheduling, enhanced water deliv-

ery systems, and the adoption of water-conserving technologies to optimize resource use 

efficiency. 

 

3.15.3. Yield and Water Productivity Gaps 

 

The comparative analysis between actual yields and WaPOR-calculated productivity 

(R = 0.52, p = 5.5e-05) reveals both the potential and limitations of using remote sensing for 

agricultural monitoring. The systematic underestimation of yields by WaPOR, particularly 

for high-performing farms, suggests the need for refined calibration of remote sensing mod-

els and integration with ground-truth data for more accurate productivity assessments. 

The substantial gaps between current and optimal yields (1-5 t/ha in Managil Zone, 

with other zones showing even larger disparities) and water productivity (current values gen-

erally below 0.55 kg/m³ compared to optimal ranges of 0.8-1.6 kg/m³) underscore the sig-

nificant potential for improvement. These gaps represent not just unrealized agricultural 
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potential but also opportunities for enhancing food security and economic returns for farmers 

in the region. 

 

3.15.4. Factors Influencing Productivity 

 

The survey of 182 wheat farmers in high-performing areas provided crucial insights 

into management practices associated with higher yields. Key factors identified include op-

timal seed rates (60-70 kg/feddan), timely sowing (10th-20th November), appropriate ferti-

lizer application (DAP 60-80 kg/feddan, urea 100-150 kg/feddan), and judicious irrigation 

scheduling (7-8 irrigations per season with 12–15-day intervals). These findings offer valu-

able guidance for developing best practice recommendations that can be disseminated across 

the scheme. 

The variability in productivity across divisions suggests that localized factors, includ-

ing soil characteristics, microclimate conditions, and management practices, play significant 

roles in determining yields. The strong correlation between AGB and yield (r = 0.99) em-

phasizes the importance of focusing on overall plant growth and health to enhance produc-

tivity. 

 

3.15.5. Implications for Sustainable Agriculture 

 

The persistent yield and water productivity gaps across the Gezira Scheme highlight 

the need for a comprehensive approach to agricultural enhancement. This approach should 

encompass: 

1. Targeted interventions in low-performing areas, focusing on improving soil fertility, 

water management, and crop protection. 

2. Knowledge transfer mechanisms to disseminate best practices from high performing 

'bright spots' to other areas of the scheme. 

3. Investment in irrigation infrastructure to improve water delivery efficiency and re-

duce water stress on crops. 

4. Adoption of precision agriculture techniques to optimize resource use, particularly 

in water application and fertilizer management. 
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5. Continued integration of remote sensing technologies with ground-level data collec-

tion for more accurate and timely monitoring of crop performance. 

 

3.16. Limitations and Future Research 

 

While this study provides comprehensive insights into wheat productivity in the Gezira 

Scheme, several limitations should be noted. The reliance on a single season's data limits our 

ability to account for inter-annual variability in climate and management practices. Future 

studies should incorporate multi-year analyses to capture temporal trends and the impacts of 

climate variability on productivity. 

Additionally, the discrepancies between WaPOR-calculated productivity and farmer-

reported yields highlight the need for further refinement of remote sensing methodologies 

for agricultural monitoring in this region. Future research should focus on improving the 

calibration of these models through extensive ground-truthing and the incorporation of high-

resolution satellite imagery. 

Finally, while our survey provided valuable insights into management practices asso-

ciated with high yields, a more comprehensive understanding of the socio-economic factors 

influencing farmer decision-making and technology adoption is needed. Future studies 

should incorporate in-depth qualitative research to explore these aspects and inform more 

effective agricultural extension strategies.



 
 

 
 

4. RECOMMENDATIONS 

 

The comprehensive study of the Gezira Scheme has yielded several critical recom-

mendations to enhance wheat productivity and water use efficiency across its 20 irrigation 

divisions. These recommendations address the spatial variability in productivity, with a par-

ticular focus on improving yields in the underperforming South and North Gezira zones. The 

Managil Zone, with its superior performance, serves as a benchmark for improvement strat-

egies in other areas. 

         A key focus area is the optimization of water management practices. The study reveals 

suboptimal water use across all divisions, with inadequacy values ranging from 0.47 to 0.64 

and a scheme-wide average relative water deficit of 27%. Implementing strategies to en-

hance water distribution equity and reduce deficits is crucial. The farmer survey results sug-

gest an optimal irrigation schedule of 7-8 times per season with 12–15-day intervals, which 

should be widely promoted. 

         Agronomic practices play a vital role in yield improvement. The study recommends 

specific seed rates (60-70 kg/feddan), sowing times (10th-20th November), and fertilizer 

application rates (DAP 60-80 kg/feddan, urea 100-150 kg/feddan) based on successful 

farmer practices. These recommendations aim to bridge the significant yield gap between 

current (3.18-4.02 t/ha) and optimal (6-9 t/ha) production levels. 

         Improving water productivity is another critical objective. The current range of 0.32-

0.45 kg/m³ falls significantly short of the optimal 0.8-1.6 kg/m³. Zone-specific targets and 

interventions, particularly in divisions with Water Productivity (WPy) values below 0.4 

kg/m³, are recommended to address this shortfall. 

         The integration of remote sensing technology with ground data collection needs refine-

ment. The study suggests improving upon the 2-3% error range in crop area estimation by 

enhancing the integration of Support Vector Machine (SVM) and Object-Based Image Anal-

ysis (OBIA) methods. Regular validation and calibration of remote sensing data with 

ground-truth information is essential to address discrepancies between calculated and re-

ported yields. 

         Resource use efficiency can be optimized by targeting improvements in divisions with 

low Net Primary Production (NPP) values and implementing strategies to reduce high Actual 

Evapotranspiration (AETI) without compromising yield. Farmer education and training 
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programs should focus on practices identified in the survey that led to high yields, using 

'bright spots' as demonstration sites for farmer field schools. 

         Climate resilience strategies are crucial given the significant evaporative demand indi-

cated by the Reference Evapotranspiration (RET) range of 1830-1920 mm/season. Promot-

ing drought-resistant wheat varieties, especially in divisions with consistently low adequacy 

values, is recommended. 

         Further research is needed to understand the factors contributing to high performing 

'bright spots' and to investigate the causes of low performance in specific divisions. Policy 

and governance recommendations include developing incentives for the adoption of best 

practices and establishing a monitoring and evaluation system based on key indicators used 

in this study. 

         Implementation of these recommendations should be prioritized based on the severity 

of issues in each division and the potential for impact. Regular monitoring and evaluation 

will be crucial to assess the effectiveness of interventions and make necessary adjustments. 

By addressing these specific areas, it is possible to significantly enhance wheat productivity, 

improve water use efficiency, and contribute to the overall sustainability and food security 

goals of the Gezira Scheme and Sudan as a who



 
 

 
 

5.CONCLUSION 

 

This comprehensive study of wheat productivity in the Gezira Irrigation Scheme has 

provided critical insights into the complex interplay of factors affecting agricultural perfor-

mance in one of the world's largest irrigation projects. By integrating advanced remote sens-

ing techniques with ground-level data and farmer surveys, this This analysis reveals signifi-

cant variability in Above Ground Biomass production and Biomass Gaps across the Gezira 

Scheme's irrigation divisions. The strong negative correlation between AGB and Biomass 

Gaps underscores the importance of optimizing biomass production to minimize yield short-

falls. Targeted interventions based on the identified performance categories can help improve 

overall wheat productivity in the scheme. Further research into the specific factors driving 

high performance in certain divisions will be crucial for developing comprehensive strate-

gies to enhance biomass production and reduce gaps across the entire Gezira Scheme. 

has illuminated both the challenges and opportunities for enhancing wheat production 

and water use efficiency in this vital agricultural region, the study revealed significant spatial 

variability in productivity across the scheme's 20 irrigation divisions. Wheat yields ranged 

from 3.18 to 4.02 t/ha, falling substantially short of the optimal range of 6-9 t/ha. Similarly, 

water productivity values (0.32-0.45 kg/m³) were well below the target of 0.58 kg/m³. This 

performance gap underscores the untapped potential within the Gezira Scheme and high-

lights the urgent need for targeted interventions. 

Our analysis of key indicators including Actual Evapotranspiration (AETI: 607-824 

mm/season), Reference Evapotranspiration (RET: 1830-1920 mm/season), Beneficial Frac-

tion (BF: 0.80-0.83), Net Primary Production (NPP: 297.92-377.28 gC/m²/season), and 

Above Ground Biomass (AGB: 6.62-8.38 t/ha) provided a nuanced understanding of the 

scheme's performance. The integrated Support Vector Machine (SVM) and Object-Based 

Image Analysis (OBIA) approach demonstrated high accuracy in crop area estimation, with 

only a 2-3% error range compared to official records. 

Crucially, the study identified suboptimal water management as a key challenge, with equity 

ranging from 10.17-19.97% (fair performance), adequacy from 0.47-0.64 (poor perfor-

mance), and a scheme-wide average relative water deficit of 27%. These findings point to 

significant opportunities for improving irrigation practices and water use efficiency across 

the scheme.
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The farmer survey component of this thesis research yielded valuable insights into on-the-

ground practices associated with higher yields. Key factors identified include optimal seed 

rates (60-70 kg/feddan), timely sowing (10th-20th November), appropriate irrigation sched-

uling (7-8 times per season, 12–15-day intervals), and judicious fertilizer application (DAP 

60-80 kg/feddan, urea 100-150 kg/feddan) These findings provide a practical foundation for 

developing targeted farmer education and extension programs. 

The novel 'bright spots' analysis, identifying high-performing areas that exceeded the 

95th percentile in both AGB and Water Productivity, offers valuable benchmarks for achiev-

able productivity levels within the local context. These areas serve as potential models for 

best practices that could be replicated across the scheme. 

While this study has provided a comprehensive assessment of the current state of 

wheat productivity in the Gezira Scheme, it also highlights areas for further research. The 

discrepancies observed between remote sensing-based productivity estimates and farmer-

reported yields (R = 0.52, p = 5.5e-05) suggest the need for continued refinement of remote 

sensing methodologies for agricultural monitoring in this region. Additionally, further inves-

tigation into the specific factors contributing to the success of 'bright spots' could yield val-

uable insights for improving overall scheme performance. 

The implications of this thesis extend beyond the immediate context of the Gezira 

Scheme. The integrated methodology developed here, combining remote sensing analysis 

with ground-truth data and farmer surveys, provides a robust framework that could be ap-

plied to other large-scale irrigation schemes facing similar challenges. Furthermore, the find-

ings contribute to broader discussions on food security, sustainable water management, and 

climate-resilient agriculture in arid and semi-arid regions. 

In conclusion, this study has demonstrated both the challenges and the significant po-

tential for improving wheat productivity and water use efficiency in the Gezira Irrigation 

Scheme. By addressing the identified yield and water productivity gaps through targeted 

interventions, improved water management, and the adoption of optimal agronomic prac-

tices, there is substantial opportunity to enhance food security, improve farmer livelihoods, 

and contribute to the sustainable development of Sudan's agricultural sector. The path for-

ward will require concerted efforts from policymakers, scheme managers, researchers, and 

farmers, guided by the evidence-based insights provided by this thesis. 

As we look to the future, the Gezira Scheme stands at a critical juncture. The imple-

mentation of the recommendations derived from this study could transform it into a model 
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of efficient, productive, and sustainable irrigated agriculture, with potential ripple effects for 

food security and agricultural development across the region and beyond. This thesis thus 

not only contributes to the scientific understanding of irrigated wheat production but also 

provides a roadmap for tangible improvements in one of Africa's most important agricultural 

systems.
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